The Khovanov homology of slice disks

Isaac Sundberg

Bryn Mawr College

Princeton Topology Seminar

21 April 2022

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Table of Contents

- 2 Khovanov homology
- Shovanov homology of knotted surfaces
- Whow the second seco
- 5 Khovanov homology of dual surfaces in the 4-ball

6 Future work

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	0000000000	000000	000000

Table of Contents

Motivation

- 2 Khovanov homology
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of surfaces in the 4-ball
- 5 Khovanov homology of dual surfaces in the 4-ball

6 Future work

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	0000000000	000000	000000

Question:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	0000000000000	0000	000000000	000000	000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000
Moti	vation for a clica	dick			

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000
Mati	untion for a alian	diale			

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk Σ by its level sets: $S^3 = \mathbb{R}^3 \cup \{\infty\}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

 $S^{3} = \mathbb{R}^{3} \cup \{\infty\}$ $B^{4} = S^{3} \times [0, 1]/S^{3} \times \{0\}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	0000000000	000000	000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

 $S^{3} = \mathbb{R}^{3} \cup \{\infty\}$ $B^{4} = S^{3} \times [0, 1]/S^{3} \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	0000000000000	0000	0000000000	000000	000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

 $S^{3} = \mathbb{R}^{3} \cup \{\infty\}$ $B^{4} = S^{3} \times [0, 1]/S^{3} \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	0000000000000	0000	0000000000	000000	000000

Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

 $S^{3} = \mathbb{R}^{3} \cup \{\infty\}$ $B^{4} = S^{3} \times [0, 1]/S^{3} \times \{0\}$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer: Always!

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

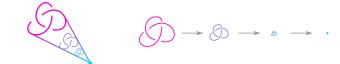
Question: When does a knot K in the 3-sphere S^3 bound a disk in the 4-ball B^4 ?

To answer this question, we can describe a disk $\boldsymbol{\Sigma}$ by its level sets:

$$S^{3} = \mathbb{R}^{3} \cup \{\infty\}$$
$$B^{4} = S^{3} \times [0, 1]/S^{3} \times \{0\}$$

The level sets of Σ are then $L_i = \Sigma \cap (S^3 \times \{i\})$.

Answer: Always!



Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Classic Question:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a slice knot and D is a slice disk.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a slice knot and D is a slice disk.

Some knots are slice, and some are not!

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Classic Question: Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a slice knot and D is a slice disk.

Some knots are slice, and some are not! Let's look at an example.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Example:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
- · · .					

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:

$$\boxed{\bigcirc} - \boxed{\bigcirc} - \boxed{\bigcirc} - \boxed{\bigcirc} - \boxed{\bigcirc} - \boxed{\bigcirc} - \boxed{\bigcirc} - \emptyset$$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:

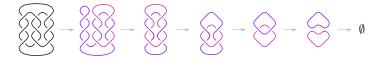
Alternative descriptions:

(a)

(b)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:

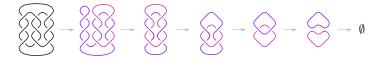


Alternative descriptions:

(a) As a shorthand, we can write this movie with a single $band\ move.$ (b)

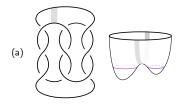
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:



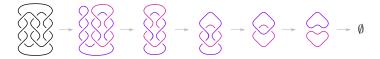
Alternative descriptions:

(a) As a shorthand, we can write this movie with a single *band move*.(b)



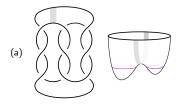
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:



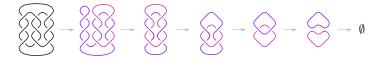
Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b) We can view a slice disk by pushing it into S^3 .



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Example: The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:



Alternative descriptions:

- (a) As a shorthand, we can write this movie with a single band move.
- (b) We can view a slice disk by pushing it into S^3 .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000
	c				

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

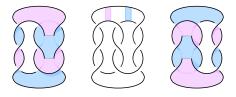
The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? Example:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? Example: There is a second slice disk D_r for 9_{46} .



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? Example: There is a second slice disk D_r for 9_{46} .

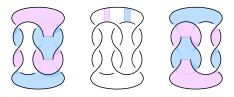


Are D_{ℓ} and D_r isotopic?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The existence of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? Example: There is a second slice disk D_r for 9_{46} .

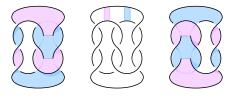


Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

The *existence* of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? **Example**: There is a second slice disk D_r for 9_{46} .



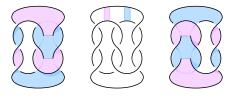
Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

The *existence* of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? **Example**: There is a second slice disk D_r for 9_{46} .



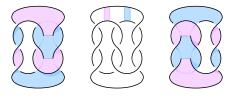
Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)? No?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

The *existence* of slice disks bounding a given knot $K \subset S^3$ is well-understood.

Follow-up Question: What about *uniqueness*? Under what type of equivalence? **Example**: There is a second slice disk D_r for 9_{46} .



Are D_{ℓ} and D_r isotopic? Yes - by a rotation!

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)? No? (No)

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

There are multiple ways to study slice disks up to boundary-preserving isotopy:

• fundamental group of the compliment

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

- fundamental group of the compliment
- Alexander modules

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

- fundamental group of the compliment
- Alexander modules
- gauge theory

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

- fundamental group of the compliment
- Alexander modules
- gauge theory
- knot Floer homology

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
00000	000000000000	0000	000000000	000000	000000

- fundamental group of the compliment
- Alexander modules
- gauge theory
- knot Floer homology
- Khovanov homology

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	•00000000000	0000	000000000	000000	000000

Table of Contents

Motivation

2 Khovanov homology

3 Khovanov homology of knotted surfaces

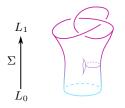
4 Khovanov homology of surfaces in the 4-ball

5 Khovanov homology of dual surfaces in the 4-ball

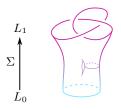
6 Future work

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				

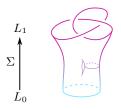


Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				



Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				



Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma: L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma: L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Link	cobordisms				

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma: L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Khovanov homology is a *functor* on the category of link cobordisms.

• links are assigned chain complexes with associated homology groups

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
المع	of Khovanov ho	mala <i>mu</i>			

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $			

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	ଦ ୧ ୧ ୧ ୫ ୫ ୫ ୫		

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	∆ 2 2 2 2 3 2 3 2 3 3 2 3 3 3 3 3 3 3 3	C(公) C(公) C(公) C(公) C(公) C(公)	

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	ଦ ୧ ୧ ୧ ୧ ୧	$< \begin{array}{c} c(\bigcirc) \\ c(\bigcirc) \end{array} >$	

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

- links are assigned chain complexes with associated homology groups
- link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	v වලිලිහිහි	$\begin{array}{c} c(\bigcirc)\\ c(\oslash)\\ c(\oslash)\\ c(\odot)\\ c(\odot)\\ c(\bigcirc)\\ c(\bigcirc)\\ c(\bigcirc)\end{array}$	$\begin{array}{c} \mathcal{C}(D_1) \\ \\ \mathcal{C}(\Sigma) \\ \\ \\ \mathcal{C}(D_0) \end{array}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	0000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

• consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob^3, \sqcup)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

- consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob^3, \sqcup)
- apply a topological quantum field theory *F*: (Cob³, ⊔) → (Mod_R, ⊗), with R some commutative ring with unity (we will use R = Z)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Formal definition:

- consider the cube of resolutions for D, which can be regarded as a collection of objects and morphisms in the cobordism category (Cob^3, \sqcup)
- apply a topological quantum field theory F: (Cob³, ⊔) → (Mod_R, ⊗), with R some commutative ring with unity (we will use R = Z)
- structure the resulting collection of *R*-modules and *R*-linear maps as a chain complex and take homology

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Practical definition:

• smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing \rangle (

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

- smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing angle(
- color each resulting component purple or orange

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

- smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing \rangle (
- color each resulting component purple or orange
- generate $\mathcal{C}(D)$ over \mathbb{Z} with all possible labeled smoothings

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

- smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing \rangle (
- color each resulting component purple or orange
- generate $\mathcal{C}(D)$ over \mathbb{Z} with all possible labeled smoothings
- define a differential and take homology

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}(D)$ with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

• Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- We set $\mathcal{C}(\emptyset) = \mathbb{Z}$ and $\mathcal{H}(\emptyset) = \mathbb{Z}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- We set $\mathcal{C}(\emptyset) = \mathbb{Z}$ and $\mathcal{H}(\emptyset) = \mathbb{Z}$
- There is a bigrading $\mathcal{C}^{h,q}(D)$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- We set $\mathcal{C}(\emptyset) = \mathbb{Z}$ and $\mathcal{H}(\emptyset) = \mathbb{Z}$
- There is a bigrading $\mathcal{C}^{h,q}(D)$
- There is a (co)differential $d \colon \mathcal{C}^{h,q}(D) \to \mathcal{C}^{h+1,q}(D)$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with homology $\mathcal{H}(D)$, called the Khovanov homology.

Properties:

- Different diagrams have isomorphic Khovanov homology (we write $\mathcal{H}(L)$ to mean: choose a diagram D for L and consider $\mathcal{H}(D)$)
- We set $\mathcal{C}(\emptyset) = \mathbb{Z}$ and $\mathcal{H}(\emptyset) = \mathbb{Z}$
- There is a bigrading $\mathcal{C}^{h,q}(D)$
- There is a (co)differential $d \colon \mathcal{C}^{h,q}(D) \to \mathcal{C}^{h+1,q}(D)$

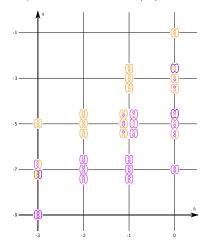
Let's take a quick look at $\mathcal{C}(3_1)$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1)\cong\mathbb{Z}^{30}$

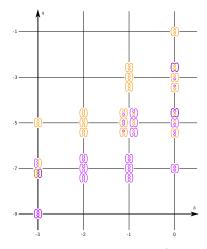
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1)\cong\mathbb{Z}^{30}$



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

The Khovanov chain complex of the trefoil is $\mathcal{C}(3_1)\cong\mathbb{Z}^{30}$



The Khovanov homology of the trefoil is $\mathcal{H}(3_1) \cong \mathbb{Z}^4$

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma): \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Definition:

• Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- \bullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- \bullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

- Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- \bullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves
- Compose these chain maps to produce $\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Definition:

- Movie diagrams D_{t_i} have associated chain complexes $\mathcal{C}(D_{t_i})$
- \bullet Adjacent diagrams D_{t_i} and $D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister move
- Define chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ for each of these moves
- Compose these chain maps to produce $\mathcal{C}(\Sigma) \colon \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

What do these chain maps $\mathcal{C}(D_{t_i}) \to \mathcal{C}(D_{t_{i+1}})$ look like?

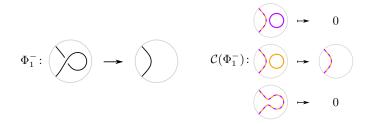
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.



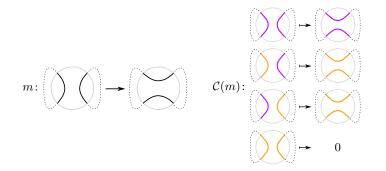
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.



Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma): \mathcal{C}(D_0) \to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma): \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma): \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

• These maps exist for surfaces in $S^3 \times [0,1]$ and B^4

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma): \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

- \bullet These maps exist for surfaces in $S^3\times [0,1]$ and B^4
- Generally, they are difficult to compute...

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000

Theorem (Khovanov)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

 $\mathcal{C}(\Sigma)\colon \mathcal{C}(D_0)\to \mathcal{C}(D_1)$

with induced homomorphism $\mathcal{H}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}(\Sigma): \mathcal{C}^{h,q}(D_0) \to \mathcal{C}^{h,q+\chi(\Sigma)}(D_1)$$

- \bullet These maps exist for surfaces in $S^3\times [0,1]$ and B^4
- Generally, they are difficult to compute...
- They are invariant under boundary-preserving isotopy

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
	•				

Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	0000000000	000000	000000
	•				

Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

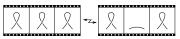
• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito-Satoh, Carter-Reiger-Saito, Fischer)

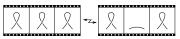


Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)



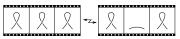
• show that movie moves induce identical maps, up to sign

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	riance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)



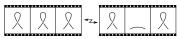
- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	riance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)



- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

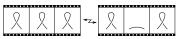
Invariance can be extended:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	riance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)



- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

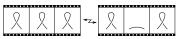
Invariance can be extended: to link cobordisms in $S^3 \times [0,1]$ and B^4

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000000	0000	000000000	000000	000000
Invar	riance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Proof idea:

• movies for isotopic surfaces are related by a sequence of *movie moves* (Carter-Saito, Carter-Saito, Carter-Reiger-Saito, Fischer)



- show that movie moves induce identical maps, up to sign
- true for $R = \mathbb{Z}$, but not $R = \mathbb{Z}[c]$

Invariance can be extended: to link cobordisms in $S^3\times [0,1]$ and B^4 and to nonorientable cobordisms.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000	0000	000000000	000000	000000
Inva	riance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Motivation 000000	Background 00000000000000	Knotted surfaces	φ -classes	φ^* -classes	Future 000000
000000	000000000000000000000000000000000000000	0000	0000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

We use this result to study link cobordisms up to boundary-preserving isotopy:

• find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$
- \bullet calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$
- \bullet calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$
- \bullet show the induced maps are distinct $\mathcal{H}(\Sigma)\neq \,\pm\mathcal{H}(\Sigma')$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000	0000	000000000	000000	000000
Invar	iance				

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

- find pairs of link cobordisms $\Sigma, \Sigma' \colon L_0 \to L_1$
- \bullet calculate their induced maps $\mathcal{H}(\Sigma)$ and $\mathcal{H}(\Sigma')$
- \bullet show the induced maps are distinct $\mathcal{H}(\Sigma)\neq \ \pm \mathcal{H}(\Sigma')$
- \bullet conclude Σ,Σ' are not isotopic rel boundary

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	0000000000	000000	000000

A brief remark on local knottedness

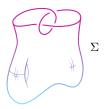
In general, it is (perhaps too) easy to build such link cobordisms:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

• Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'

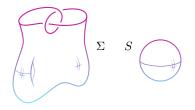


Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

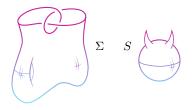
- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- \bullet Choose your favorite knotted 2-sphere S



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

In general, it is (perhaps too) easy to build such link cobordisms:

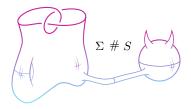
- Given $\Sigma: L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- $\bullet\,$ Choose your favorite knotted 2-sphere S



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

In general, it is (perhaps too) easy to build such link cobordisms:

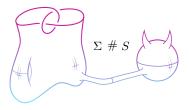
- Given $\Sigma: L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- \bullet Choose your favorite knotted 2-sphere S and connect-sum with Σ



Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	0000000000	000000	000000

In general, it is (perhaps too) easy to build such link cobordisms:

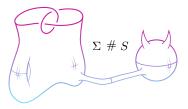
- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- $\bullet\,$ Choose your favorite knotted 2-sphere S and connect-sum with $\Sigma\,$
- Then Σ and $\Sigma' := \Sigma \# S$ are (generally) not isotopic rel boundary.



Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- $\bullet\,$ Choose your favorite knotted 2-sphere S and connect-sum with $\Sigma\,$
- Then Σ and $\Sigma' := \Sigma \# S$ are (generally) not isotopic rel boundary.



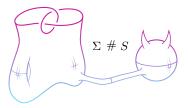
Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under connected sums with knotted 2-spheres.

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	0000000000	000000	000000

In general, it is (perhaps too) easy to build such link cobordisms:

- Given $\Sigma \colon L_0 \to L_1$, we create a new (unique) link cobordism Σ'
- $\bullet\,$ Choose your favorite knotted 2-sphere S and connect-sum with $\Sigma\,$
- Then Σ and $\Sigma' := \Sigma \# S$ are (generally) not isotopic rel boundary.



Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under connected sums with knotted 2-spheres.

Takeaway: maps on Khovanov homology detect more than local knotting

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	●000	000000000	000000	000000

Table of Contents

Motivation

2 Khovanov homology

Shovanov homology of knotted surfaces

- 4 Khovanov homology of surfaces in the 4-ball
- 5 Khovanov homology of dual surfaces in the 4-ball

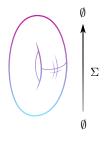
6 Future work

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Question:

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	○●○○	0000000000	000000	000000
Defir	ning φ -numbers				

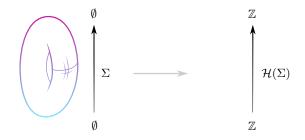
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000
Defin	ing o-numbers				



Method:

• A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$

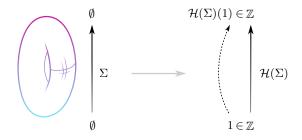
Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	○●○○	0000000000	000000	000000
Defin	ing co-numbers				



Method:

- A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$, determined by $\mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	○●○○	0000000000	000000	000000
Defin	ing conumbers				



Method:

- A knotted surface $\Sigma \subset B^4$ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$, determined by $\mathcal{H}(\Sigma)(1) \in \mathbb{Z}$
- $\bullet\,$ This integer is invariant, up to sign, under ambient isotopy of $\Sigma\,$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

 $\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

is an up-to-sign invariant of the ambient isotopy of Σ .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

 $\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

 $\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Can we find $\Sigma_{0,1} \subset B^4$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the φ -number of Σ

 $\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathbb{Z}$

is an up-to-sign invariant of the ambient isotopy of Σ .

Do the φ -numbers distinguish any knotted surfaces?

Can we find $\Sigma_{0,1} \subset B^4$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Theorem (Rasmussen, Tanaka)

The φ -numbers associated to connected $\Sigma \subset B^4$ are determined by genus:

• if
$$g(\Sigma) = 1$$
, then $\varphi(\Sigma) = \pm 2$

• if $g(\Sigma) \neq 1$, then $\varphi(\Sigma) = 0$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Cases

Idea:

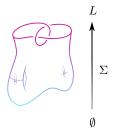
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	000●	0000000000	000000	000000
Cases					

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	000●	0000000000	000000	000000
Cases					

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	000●	0000000000	000000	000000
Cases					

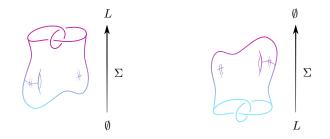
A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as: a. a link cobordism $\Sigma \colon \emptyset \to L$, or



Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	000000000000	000●	000000000	000000	000000
Cases					

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. a link cobordism $\Sigma \colon L \to \emptyset$

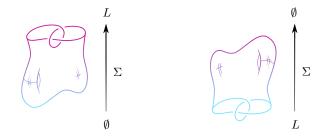


Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	000●	0000000000	000000	000000
Cases					

A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. a link cobordism $\Sigma \colon L \to \emptyset$

We consider these cases separately in the next two sections.



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	000000	000000

Table of Contents

Motivation

2 Khovanov homology

3 Khovanov homology of knotted surfaces

Whow the second seco

5 Khovanov homology of dual surfaces in the 4-ball

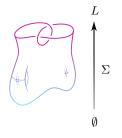
6 Future work

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	000000000	000000	000000
	lan is alaassa				

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	O $000000000000000000000000000000000000$	000000	000000
Defir	ing co-classes				

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

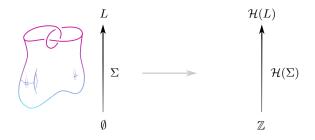


Method:

 \bullet A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon \emptyset \to L$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?

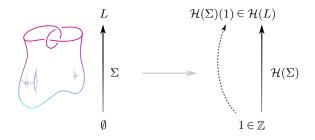


Method:

- A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon \emptyset \to L$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathcal{H}(L)$, determined by $\mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Can the induced maps on Khovanov homology distinguish surfaces with boundary in the 4-ball?



Method:

- A surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon \emptyset \to L$
- It induces a map $\mathcal{H}(\Sigma) \colon \mathbb{Z} \to \mathcal{H}(L)$, determined by $\mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$
- $\bullet\,$ This homology class is invariant, up to sign, under boundary-preserving isotopy of $\Sigma\,$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

 $\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

```
\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)
```

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

$$\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the φ -class of Σ

```
\varphi(\Sigma) := \mathcal{H}(\Sigma)(1) \in \mathcal{H}(L)
```

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ -classes distinguish any surfaces with boundary? Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ with $\varphi(\Sigma_0) \neq \pm \varphi(\Sigma_1)$? If so, we say $\Sigma_{0,1}$ are φ -distinguished.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000 \bullet 000000	000000	000000

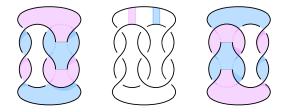
Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are $\varphi\text{-distinguished},$ and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000		000000000	000000	000000

Theorem (Swann, Sundberg)

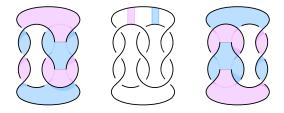
The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000 \bullet 00000	000000	000000

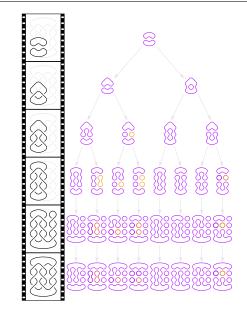
Theorem (Swann, Sundberg)

The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.



What do $\varphi(D_\ell)$ and $\varphi(D_r)$ look like?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000



Motivation	Background	Knotted surfaces	φ-classes	φ^* -classes	Future
000000	0000000000000		00000€0000	000000	000000

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are $\varphi\text{-distinguished},$ and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Swann, Sundberg)

The slice disks D_{ℓ} and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_{ℓ} and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.

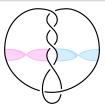
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		00000 \bullet 0000	000000	000000

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_{ℓ} and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.



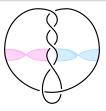
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		00000 \bullet 0000	000000	000000

Theorem (Swann, Sundberg)

The slice disks D_ℓ and D_r for 9_{46} are φ -distinguished, and therefore, are not isotopic rel boundary.

Theorem (Sundberg)

The slice disks D_{ℓ} and D_r for 6_1 (below) are φ -distinguished, and therefore, are not isotopic rel boundary.



Are there knots with more than 2 unique slice disks?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000 \bullet 000	000000	000000

Theorem (Sundberg-Swann)

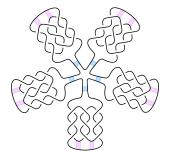
The 2^n slice disks bounding $\#_n(9_{46})$ are φ -distinguished, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000 \bullet 000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding $\#_n(9_{46})$ are φ -distinguished, and therefore, are not isotopic rel boundary.

Slice disks are obtained by boundary-summing copies of D_{ℓ} and D_r .



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	00000000000	000000	000000

Theorem (Sundberg-Swann)

Motivation E	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000 0	000000000000000000000000000000000000000	0000	0000000000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

Proof Idea:

• Every knot is ribbon concordant to a prime knot [KL79]

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	00000000000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]
- So, extend the 2^n slice disks for $K=\#_n(9_{46})$ by a ribbon-concordance $C\colon K\to K_n$ to a prime knot K_n

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		00000000000	000000	000000

Theorem (Sundberg-Swann)

The 2^n slice disks bounding the prime knot K_n (below) are φ -distinguished, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot [KL79]
- Ribbon concordances induce injections on Khovanov homology [LZ19]
- So, extend the 2^n slice disks for $K=\#_n(9_{46})$ by a ribbon-concordance $C\colon K\to K_n$ to a prime knot K_n
- These slice disks are pairwise φ -distinguished using injectivity and functoriality of the induced maps on Khovanov homology:

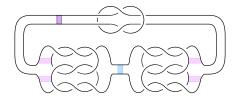
$$\varphi(C \circ D) = \mathcal{H}(C)(\varphi(D)) \neq \pm \mathcal{H}(C)(\varphi(D')) = \varphi(C \circ D')$$

Motivation	Background	Knotted surfaces	φ-classes	φ^* -classes	Future
000000	0000000000000		00000000●0	000000	000000

Theorem (Sundberg-Swann)

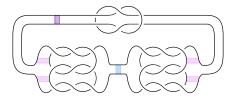
Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

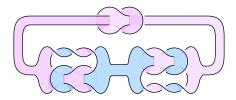
Theorem (Sundberg-Swann)



Motivation 000000	Background 0000000000000	Knotted surfaces	φ-classes 00000000●0	φ^* -classes	Future 000000
000000		0000		000000	000000

Theorem (Sundberg-Swann)





Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Motivation	Background	Knotted surfaces	φ-classes	φ^* -classes	Future
000000	0000000000000		00000000●	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Some obstructions from φ -classes:

• odd, three-stranded pretzel knots P(p,q,r)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p, q, r \geq 3$, then P(p, q, r) is not slice [Swann]

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p, q, r \geq 3$, then P(p, q, r) is not slice [Swann]
 - $\bullet~{\rm if}~p,q,\geq 3,~{\rm then}~P(p,q,-1)~{\rm is}~{\rm not}~{\rm slice}~[{\rm Swann}]$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p,q,r \ge 3$, then P(p,q,r) is not slice [Swann]
 - $\bullet~{\rm if}~p,q,\geq 3,~{\rm then}~P(p,q,-1)~{\rm is}~{\rm not}~{\rm slice}~[{\rm Swann}]$
 - K = P(-3, 5, 7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t) = 1$)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p,q,r \ge 3$, then P(p,q,r) is not slice [Swann]
 - $\bullet~{\rm if}~p,q,\geq 3,~{\rm then}~P(p,q,-1)~{\rm is}~{\rm not}~{\rm slice}~[{\rm Swann}]$
 - K = P(-3, 5, 7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t) = 1$)
- $\bullet\,$ knots with 4-ball genus at most $1\,$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		000000000	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p,q,r \ge 3$, then P(p,q,r) is not slice [Swann]
 - $\bullet~{\rm if}~p,q,\geq 3,~{\rm then}~P(p,q,-1)~{\rm is}~{\rm not}~{\rm slice}~[{\rm Swann}]$
 - K = P(-3, 5, 7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t) = 1$)
- $\bullet\,$ knots with 4-ball genus at most $1\,$
 - Whitehead doubles?

Motivation	Background	Knotted surfaces	φ-classes	φ^* -classes	Future
000000	0000000000000		00000000●	000000	000000

Theorem (Swann)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\varphi(\Sigma) = 0$ then K is not smoothly slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

- \bullet odd, three-stranded pretzel knots P(p,q,r)
 - if $p,q,r \ge 3$, then P(p,q,r) is not slice [Swann]
 - $\bullet~{\rm if}~p,q,\geq 3,~{\rm then}~P(p,q,-1)~{\rm is}~{\rm not}~{\rm slice}~[{\rm Swann}]$
 - K = P(-3, 5, 7) is not slice (gives gauge theory free proof of exotic \mathbb{R}^4 because K is topologically slice, $\Delta_K(t) = 1$)
- $\bullet\,$ knots with 4-ball genus at most $1\,$
 - Whitehead doubles?
 - unknotting number 1 knots? (e.g., the Conway knot)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	00000000000	0000	000000000	00000	000000

Table of Contents

Motivation

2 Khovanov homology

3 Khovanov homology of knotted surfaces

4 Khovanov homology of surfaces in the 4-ball

5 Khovanov homology of dual surfaces in the 4-ball

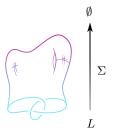
6 Future work

Motivation 000000	Background 00000000000000	Knotted surfaces	φ -classes	φ^* -classes	Future 000000
Dofin	ing (o* numbers				

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000
יז ס	• * •				

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

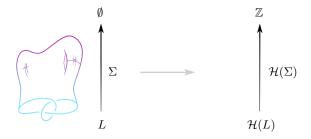


Method:

 \bullet a surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon L \to \emptyset$

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	000000000000	0000	0000000000	000000	000000

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.

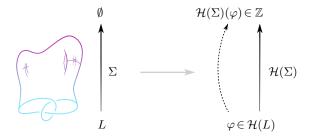


Method:

- \bullet a surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon L \to \emptyset$
- it induces a map $\mathcal{H}(\Sigma) \colon \mathcal{H}(L) \to \mathbb{Z}$

N	Notivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
C	000000	000000000000	0000	000000000	00000	000000

Let's look at the second case: the dual link cobordism $\Sigma \colon L \to \emptyset$.



Method:

- a surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ induces a link cobordism $\Sigma \colon L \to \emptyset$
- it induces a map $\mathcal{H}(\Sigma) \colon \mathcal{H}(L) \to \mathbb{Z}$
- choose a class φ ∈ H(L), and note that H(Σ)(φ) ∈ Z is an up-to-sign invariant of the isotopy class of Σ.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ^* -numbers distinguish any surfaces with boundary?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Lemma

For a link cobordism $\Sigma: L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do φ^* -numbers distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ and a class $\varphi \in \mathcal{H}(L)$ such that $\varphi^*(\Sigma_0) \neq \pm \varphi^*(\Sigma_1)$?

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Lemma

For a link cobordism $\Sigma: L \to \emptyset$ and a class $\varphi \in \mathcal{H}(L)$, the φ^* -number

$$\varphi^*(\Sigma) := \mathcal{H}(\Sigma)(\varphi) \in \mathbb{Z}$$

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ .

Do $\varphi^*\text{-numbers}$ distinguish any surfaces with boundary?

Can we find $\Sigma_{0,1} \subset B^4$ bounding a common $L \subset S^3$ and a class $\varphi \in \mathcal{H}(L)$ such that $\varphi^*(\Sigma_0) \neq \pm \varphi^*(\Sigma_1)$?

If so, we say $\Sigma_{0,1}$ are φ^* -distinguished.

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	0000	0000000000	000 00	000000

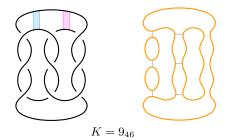
Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Theorem (Hayden-Sundberg)

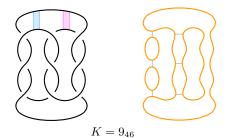
The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000 \bullet 00	000000

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_{τ} for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

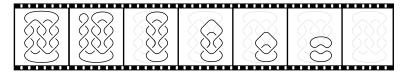


Proof idea: show $\varphi^*(D_\ell) = 1$ and $\varphi^*(D_r) = 0$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Hayden-Sundberg)

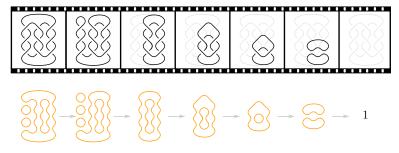
The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.



Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

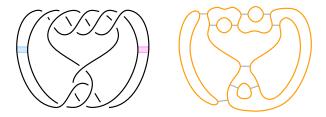


So $\varphi^*(D_\ell) = 1$ and $\varphi^*(D_r) = 0$, as desired.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

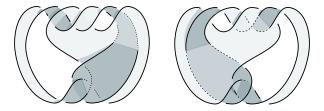


 $K = 15n_{103488}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000		0000000000	000000	000000

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.



Slice disks for $K = 15n_{103488}$ (image by Kyle Hayden).

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Theorem (Hayden-Sundberg)

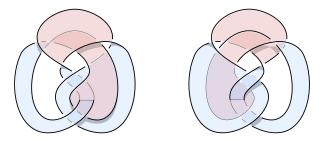
The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.

 $K = 17nh_{74}$

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000

Theorem (Hayden-Sundberg)

The pair of slice disks D_{ℓ} and D_r for the knot K (below) are φ^* -distinguished by the given class $\varphi \in \mathcal{H}(K)$, and therefore, are not isotopic rel boundary.



Slice disks for $K = 17nh_{74}$ (image by Kyle Hayden).

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are $\rm exotic$ if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

First proof that Khovanov homology detects exotic surfaces.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

First proof that Khovanov homology detects exotic surfaces. First gauge-theory free proof of exotic surfaces.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

Definition

A pair of surfaces in B^4 are **exotic** if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B^4 .

First proof that Khovanov homology detects exotic surfaces.

First gauge-theory free proof of exotic surfaces.

Can be extended to higher genus surfaces, asymmetric knots, and ambient isotopy.

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	00000	000000

 φ -classes:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	00000	000000

 φ -classes:

 \bullet hard to compute $\varphi\text{-classes}$

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	00000	000000

 φ -classes:

- \bullet hard to compute $\varphi\text{-classes}$
- hard to compare φ -classes

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000	0000	000000000	000000	000000

 φ -classes:

- \bullet hard to compute $\varphi\text{-classes}$
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	00000	000000

 φ -classes:

- \bullet hard to compute $\varphi\text{-classes}$
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

 φ^* -numbers:

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	00000	000000

 φ -classes:

- hard to compute φ -classes
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

 φ^* -numbers:

 \bullet easy to compute $\varphi^*\text{-numbers}$ when φ is chosen wisely

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	00000	000000

 φ -classes:

- hard to compute φ -classes
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

 φ^* -numbers:

- \bullet easy to compute $\varphi^*\text{-numbers}$ when φ is chosen wisely
- easy to compare φ^* -numbers (they are integers)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	000000000000000000000000000000000000000	0000	000000000	00000	000000

 φ -classes:

- hard to compute φ -classes
- hard to compare φ -classes
- easy to extend calculations (e.g., by ribbon concordances)

φ^* -numbers:

- \bullet easy to compute $\varphi^*\text{-numbers}$ when φ is chosen wisely
- ullet easy to compare $\varphi^*\text{-numbers}$ (they are integers)
- hard to extend calculations

Motivation	Background	Knotted surfaces	φ -classes	ϕ^* -classes	Future
000000	00000000000	0000	000000000	000000	•00000

Table of Contents

Motivation

2 Khovanov homology

3 Khovanov homology of knotted surfaces

4 Khovanov homology of surfaces in the 4-ball

5 Khovanov homology of dual surfaces in the 4-ball

6 Future work

Motivation 000000	Background 00000000000000	Knotted surfaces	φ -classes	φ^* -classes	Future 000000
Futu	re work				

 \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	0000	0000000000	000000	0●0000
Futu	re work				

- \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$
- tweak the algebra (e.g., through different versions of Khovanov homology)

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	0●0000
Futu	re work				

- \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000	0000	0000000000	000000	0●0000
Futu	re work				

- \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	0●0000
Futu	re work				

- \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)
- study relationship with other invariants (e.g. *s*-invariant or knot Floer homology)

Motivation	Background	Knotted surfaces	φ -classes	φ^* -classes	Future
000000	0000000000000	0000	0000000000	000000	0●0000
Futu	re work				

- \bullet explore relationship between $\varphi\text{-classes}$ and $\varphi^*\text{-numbers}$
- tweak the algebra (e.g., through different versions of Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, equivariant stuff)
- study relationship with other invariants (e.g. *s*-invariant or knot Floer homology)
- \bullet study slice obstruction from $\varphi\text{-classes}$

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	00●000

Thank You!

Thank you!

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000●●●
Biblic	ography I				

- D Bar-Natan, *Khovanov's homology for tangles and cobordisms*, **Geom. Topol.**, 9:1443-1499, 2005.
- Anthony Conway and Mark Powell, *Characterisation of homotopy ribbon discs*, **Adv. Math.**, 391:Paper No. 107960, 2021.
 - Kyle Hayden, *Corks, covers, and complex curves*, arXiv:2107.06856, 2021.
- Kyle Hayden and Isaac Sundberg, *Khovanov homology and exotic surfaces in the 4-ball*, arXiv:2108.04810, 2021.
 - Magnus Jacobsson, *An invariant of link cobordisms from Khovanov homology*, **Algebr. Geom. Topol.**, 4:1211-1251, 2004.
 - András Juhász and Ian Zemke, Distinguishing slice disks using knot floer homology, Seceta Math. (N.S.),20(1), 2020.
 - Mikhail Khovanov, A categorification of the Jones polynomial, Duke Math. J., 101(3):359-426, 2000.

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000000
Biblic	ography II				

- Mikhail Khovanov, *An invariant of tangle cobordisms*, **Transactions of the American Mathematical Society**, 358(1):315-327, 2006.

Adam S. Levine and Ian Zemke, *Khovanov homology and ribbon concordances*, **Bull. Lond. Math. Soc.**, 51(6):1099-1103, 2019.

- Allison N. Miller and Mark Powell, Stabilization distance between surfaces, *Enseign. Math.*,**65**:397-440, 2020.
- Lisa Piccirillo, The Conway knot is not slice, Ann. of Math. (2), 191(2):581-591, 2020.
- F
- Jacob Rasmussen, *Khovanov's invariant for closed surfaces*, arXiv:math/0502527, 2005.
- Isaac Sundberg and Jonah Swann, *Relative Khovanov-Jacobsson classes*, arXiv:2103.01438, 2021.
- Jonah Swann, Relative Khovanov-Jacobsson classes of spanning surfaces, Ph.D. Thesis, Bryn Mawr College, 2010.

Motivation	Background	Knotted surfaces	arphi-classes	φ^* -classes	Future
000000	0000000000000		0000000000	000000	000●●●
Biblio	ography III				

Kokoro Tanaka, *Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory*, **Proc. Amer. Math. Soc.**, 134(12):3685–3689, 2005.