The Khovanov homology of slice disks

Isaac Sundberg

Collaborators: Jonah Swann & Kyle Hayden

Bryn Mawr College

MIT Geometry & Topology Seminar

4 October 2021

Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- Movanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

Question:

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Recall: We can view the 3-sphere and 4-ball as follows:

- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Recall: We can view the 3-sphere and 4-ball as follows:

- $\bullet S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example:

Question:

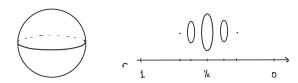
Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A sphere in the 4-ball might look like:



Question:

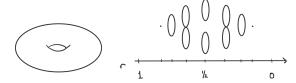
Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Recall: We can view the 3-sphere and 4-ball as follows:

- $\bullet S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A torus in the 4-ball might look like:



Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

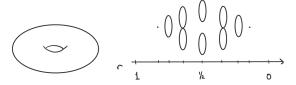
Recall: We can view the 3-sphere and 4-ball as follows:

$$S^3 = \mathbb{R}^3 \cup \{\infty\}$$

•
$$B^4 = S^3 \times [0,1]/S^3 \times \{0\}$$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A torus in the 4-ball might look like:



Takeaway: We can answer this question by describing the level sets of a disk D.

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer:

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer: Yes, always!

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer: Yes, always!

 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

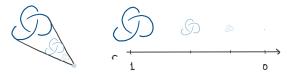
 00●000
 00000
 0000
 000000
 00000
 00000

Definition of a slice disk

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer: Yes, always!



Classic Question:

 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

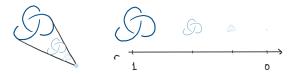
 00●000
 00000
 0000
 000000
 00000
 00000

Definition of a slice disk

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer: Yes, always!



Classic Question:

Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 00●000
 00000
 0000
 000000
 00000
 00000

Definition of a slice disk

Question:

Given a knot K in the 3-sphere S^3 , when does K bound a disk D properly embedded in the 4-ball B^4 ?

Answer: Yes, always!

Classic Question:

Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a **slice knot** and D is a **slice disk**.

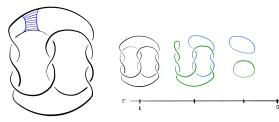
Example:

Example:

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

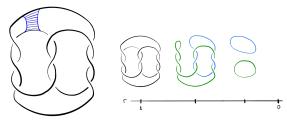
Example:

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:



Example:

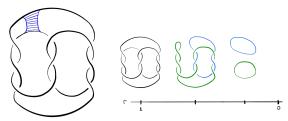
The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:



A second slice D_r can be described similarly, by performing the $\it band\ move$ on the right-hand-side of $9_{46}.$

Example:

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:



A second slice D_r can be described similarly, by performing the *band move* on the right-hand-side of 9_{46} . We can se these disks pushed into S^3 as:

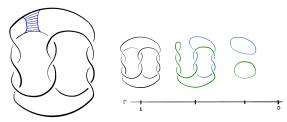
 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 000 ● 00
 000000
 0000000
 0000000
 00000
 00000

Example of a slice disk

Example:

The knot 9_{46} is slice, with slice disk D_{ℓ} described by the following level sets:



A second slice D_r can be described similarly, by performing the *band move* on the right-hand-side of 9_{46} . We can se these disks pushed into S^3 as:

Follow-up Question:

Follow-up Question:

Are D_ℓ and D_r isotopic?

Follow-up Question:

Are D_ℓ and D_r isotopic?

Answer:

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_{r} isotopic?

Answer:

Yes - by a rotation!

Follow-up Question:

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 0000 ●0
 000000
 000000
 000000
 00000
 00000

Equivalence of slice disks

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_ℓ and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

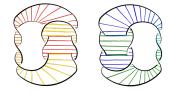
Maybe? Not exactly easy to tell without doing some math...

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Yes - by a rotation!



Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

Maybe? Not exactly easy to tell without doing some math...

We need techniques for studying surfaces up to boundary-preserving isotopy!

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

• fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)
- knot Floer homology (e.g. Juhasz-Zemke)

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

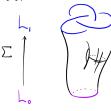
- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)
- knot Floer homology (e.g. Juhasz-Zemke)
- Khovanov homology

Table of Contents

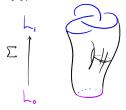
- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of slice disks: Khovanov-Jacobsson classes
- 6 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

Definition. A **link cobordism** $\Sigma\colon L_0\to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma\subset S^3\times [0,1]$ with boundary a pair $(i\in\{0,1\})$ of oriented links $L_i=\Sigma\cap (S^3\times \{i\})$.

Definition. A **link cobordism** $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.

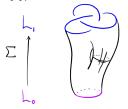


Definition. A **link cobordism** $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.



Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A **link cobordism** $\Sigma \colon L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.



Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma \colon L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

How do we define this chain complex?

 \bullet Choose a diagram D for your link

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

- ullet Choose a diagram D for your link
- \bullet Smooth each crossing \swarrow in D as a $0\text{-smoothing} \ensuremath{\,\,\,^{\sim}}$ or a 1-smoothing)(

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

- ullet Choose a diagram D for your link
- ullet Smooth each crossing \swarrow in D as a 0-smoothing $\widecheck{\sim}$ or a 1-smoothing) (
- \bullet Label each resulting component with a 1 or an \boldsymbol{x}

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

- ullet Choose a diagram D for your link
- Smooth each crossing χ in D as a 0-smoothing χ or a 1-smoothing χ
- ullet Label each resulting component with a 1 or an x
- ullet Generate $\mathcal{C}\mathsf{Kh}(D)$ over $\mathbb Z$ with all possible labeled smoothings

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Properties:

• Different diagrams have isomorphic Khovanov homology (we write $\mathsf{Kh}(L)$ to mean: choose a diagram D for L and consider $\mathsf{Kh}(D)$)

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write $\mathsf{Kh}(L)$ to mean: choose a diagram D for L and consider $\mathsf{Kh}(D)$)
- We set $CKh(\emptyset) = \mathbb{Z}$ and $Kh(\emptyset) = \mathbb{Z}$

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex $\mathcal{C}\mathsf{Kh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write $\mathsf{Kh}(L)$ to mean: choose a diagram D for L and consider $\mathsf{Kh}(D)$)
- We set $CKh(\emptyset) = \mathbb{Z}$ and $Kh(\emptyset) = \mathbb{Z}$
- There is a bigrading $CKh^{h,q}(D)$

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write $\mathsf{Kh}(L)$ to mean: choose a diagram D for L and consider $\mathsf{Kh}(D)$)
- ullet We set $\mathcal{C}\mathsf{Kh}(\emptyset)=\mathbb{Z}$ and $\mathsf{Kh}(\emptyset)=\mathbb{Z}$
- There is a bigrading $CKh^{h,q}(D)$
- There is a differential $d: \mathcal{C}\mathsf{Kh}^{h,q}(D) \to \mathcal{C}\mathsf{Kh}^{h+1,q}(D)$

Theorem (Khovanov '00)

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write $\mathsf{Kh}(L)$ to mean: choose a diagram D for L and consider $\mathsf{Kh}(D)$)
- ullet We set $\mathcal{C}\mathsf{Kh}(\emptyset)=\mathbb{Z}$ and $\mathsf{Kh}(\emptyset)=\mathbb{Z}$
- There is a bigrading $CKh^{h,q}(D)$
- There is a differential $d \colon \mathcal{C}\mathsf{Kh}^{h,q}(D) \to \mathcal{C}\mathsf{Kh}^{h+1,q}(D)$
- Many similarly defined link homology theories exist

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma\colon L_0\to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $Kh(\Sigma)$ on homology.

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma\colon L_0\to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

How do we define these chain maps?

ullet The diagrams D_{t_i} in the movie each have an associated chain complex

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

- \bullet The diagrams D_{t_i} in the movie each have an associated chain complex
- ullet Adjacent frames $D_{t_i} o D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma\colon L_0\to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $Kh(\Sigma)$ on homology.

- \bullet The diagrams D_{t_i} in the movie each have an associated chain complex
- \bullet Adjacent frames $D_{t_i} \to D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves
- Define chain maps for each of these moves

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $Kh(\Sigma)$ on homology.

- \bullet The diagrams D_{t_i} in the movie each have an associated chain complex
- \bullet Adjacent frames $D_{t_i} \to D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves
- Define chain maps for each of these moves
- ullet Compose these chain maps to produce $\mathcal{C}\mathsf{Kh}(\Sigma)$

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma) \colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0) \to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma) \colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0) \to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

Generally, they are difficult to compute...

Theorem (Khovanov '00)

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma\colon L_0\to L_1$ induces a chain map

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$$

with induced homomorphism $Kh(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma) \colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0) \to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

- Generally, they are difficult to compute...
- But they have one very useful property!

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:

Distinguish link cobordisms Σ, Σ' up to **smooth** isotopy rel boundary by showing their induced maps are distinct $\mathsf{Kh}(\Sigma) \neq \pm \mathsf{Kh}(\Sigma')$

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:

Distinguish link cobordisms Σ, Σ' up to **smooth** isotopy rel boundary by showing their induced maps are distinct $\mathsf{Kh}(\Sigma) \neq \pm \mathsf{Kh}(\Sigma')$

$$\mathsf{Kh}(\Sigma) \neq \pm \mathsf{Kh}(\Sigma') \implies \Sigma \not\simeq_{\partial} \Sigma'$$

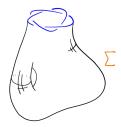
A brief remark on local knottedness

In general, it is (perhaps too) easy to change isotopy classes:

A brief remark on local knottedness

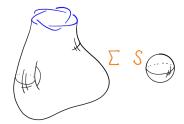
In general, it is (perhaps too) easy to change isotopy classes:

• Given $\Sigma \colon L_0 \to L_1$



In general, it is (perhaps too) easy to change isotopy classes:

- Given $\Sigma \colon L_0 \to L_1$
- ullet Choose your favorite knotted 2-sphere S



In general, it is (perhaps too) easy to change isotopy classes:

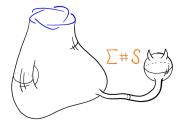
- Given $\Sigma \colon L_0 \to L_1$
- \bullet Choose your favorite knotted 2-sphere S

In general, it is (perhaps too) easy to change isotopy classes:

- Given $\Sigma \colon L_0 \to L_1$
- ullet Choose your favorite knotted 2-sphere S
- Then Σ and $\Sigma \# S$ are (generally) not isotopic rel K.

In general, it is (perhaps too) easy to change isotopy classes:

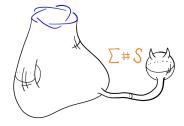
- Given $\Sigma \colon L_0 \to L_1$
- \bullet Choose your favorite knotted 2-sphere S
- Then Σ and $\Sigma \# S$ are (generally) not isotopic rel K.



Definition. A surface Σ is *locally knotted* if $\Sigma = \Sigma' \# S$ for some surface Σ' .

In general, it is (perhaps too) easy to change isotopy classes:

- Given $\Sigma \colon L_0 \to L_1$
- Choose your favorite knotted 2-sphere S
- Then Σ and $\Sigma \# S$ are (generally) not isotopic rel K.



Definition. A surface Σ is *locally knotted* if $\Sigma = \Sigma' \# S$ for some surface Σ' .

Theorem (Swann '10, Hayden-S. '21)

The map on Khovanov homology induced by a link cobordism is invariant under local knotting.

Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

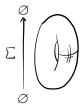
Question:

Question:

Can these induced maps distinguish (closed) knotted surfaces in ${\cal B}^4$?

Question:

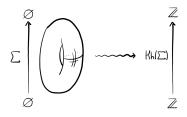
Can these induced maps distinguish (closed) knotted surfaces in B^4 ?



• A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.

Question:

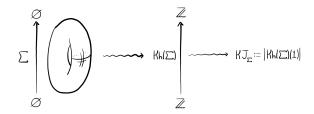
Can these induced maps distinguish (closed) knotted surfaces in B^4 ?



- A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.
- It induces a map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$

Question:

Can these induced maps distinguish (closed) knotted surfaces in B^4 ?



- A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.
- It induces a map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$
- This map is determined by $\mathsf{Kh}(\Sigma)(1) \in \mathbb{Z}$, so this integer is an up-to-sign invariant of the (ambient) isotopy class of Σ

Rasmussen-Tanaka

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathbb{Z}$$

is an invariant of the ambient isotopy class of Σ .

Rasmussen-Tanaka

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathbb{Z}$$

is an invariant of the ambient isotopy class of Σ .

Question. Do Khovanov-Jacobsson numbers distinguish any knotted surfaces?

Rasmussen-Tanaka

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathbb{Z}$$

is an invariant of the ambient isotopy class of Σ .

Question. Do Khovanov-Jacobsson numbers distinguish any knotted surfaces?

Theorem (Rasmussen '05, Tanaka '05)

Khovanov-Jacobsson numbers of connected Σ are determined by genus:

- if $g(\Sigma) = 1$, then $\mathsf{KJ}_{\Sigma} = 2$
- if $g(\Sigma) \neq 1$, then $\mathsf{KJ}_{\Sigma} = 0$

Idea:

Idea:

Follow the same procedure for surfaces with boundary.

Idea:

Follow the same procedure for surfaces with boundary.

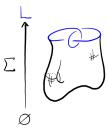
A (nice) surface $\Sigma\subset B^4$ with boundary $L\subset S^3$ can be regarded as:

Idea:

Follow the same procedure for surfaces with boundary.

A (nice) surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

a. a link cobordism $\Sigma \colon \emptyset \to L$, or

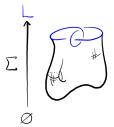


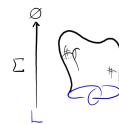
Idea:

Follow the same procedure for surfaces with boundary.

A (nice) surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. its reverse cobordism $\Sigma \colon L \to \emptyset$





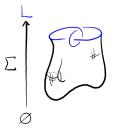
Idea:

Follow the same procedure for surfaces with boundary.

A (nice) surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. its reverse cobordism $\Sigma \colon L \to \emptyset$

We consider these cases separately.



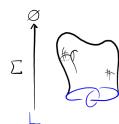
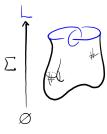


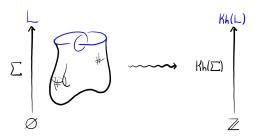
Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- Mhovanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$

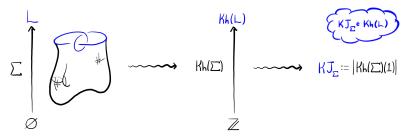


Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$



Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathsf{Kh}(L)$

Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$



Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathsf{Kh}(L)$

This map is determined by $\operatorname{Kh}(\Sigma)(1) \in \operatorname{Kh}(L)$, so this homology class is an up-to-sign invariant of the (relative) isotopy class of Σ .

Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$$

is an invariant of the boundary-preserving isotopy class of Σ .

Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$$

is an invariant of the boundary-preserving isotopy class of Σ .

Question:

Do Khovanov-Jacobsson classes distinguish any surfaces?

Case 1: Consider a link cobordism $\Sigma \colon \emptyset \to L$

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

$$\mathsf{KJ}_\Sigma := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$$

is an invariant of the boundary-preserving isotopy class of Σ .

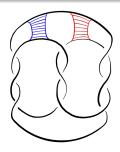
Question:

Do Khovanov-Jacobsson classes distinguish any surfaces?

Hopefully!

Theorem (Swann '10, S. '20)

The slice disks D_ℓ and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $\mathsf{KJ}_{D_\ell} \neq \mathsf{KJ}_{D_r}$, and therefore, are not isotopic rel boundary.



 Iotivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 00000
 00000
 00000
 00000
 00000
 00000

Khovanov-Jacobsson classes

Theorem (Swann '10, S. '20)

The slice disks D_ℓ and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $\mathsf{KJ}_{D_\ell} \neq \mathsf{KJ}_{D_r}$, and therefore, are not isotopic rel boundary.

Theorem (S. '20)

The slice disks D_ℓ and D_r for 6_1 (below) have distinct Khovanov-Jacobsson classes $\mathsf{KJ}_{D_\ell} \neq \mathsf{KJ}_{D_r}$, and therefore, are not isotopic rel boundary.

 Motivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 000000
 00000
 00000
 00000
 00000
 00000

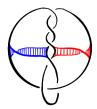
Khovanov-Jacobsson classes

Theorem (Swann '10, S. '20)

The slice disks D_ℓ and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $\mathsf{KJ}_{D_\ell} \neq \mathsf{KJ}_{D_r}$, and therefore, are not isotopic rel boundary.

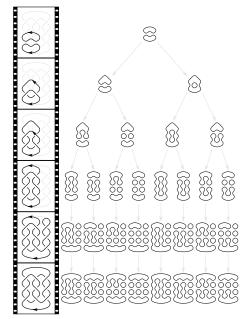
Theorem (S. '20)

The slice disks D_ℓ and D_r for 6_1 (below) have distinct Khovanov-Jacobsson classes $\mathsf{KJ}_{D_\ell} \neq \mathsf{KJ}_{D_r}$, and therefore, are not isotopic rel boundary.



Note: this uniqueness is also known through other techniques.

Calculation for 9_{46}

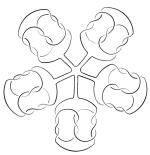


Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

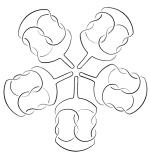
Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.



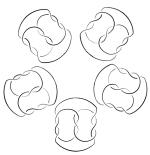
Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.



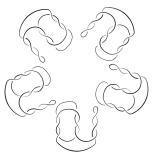
Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.



Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.



 Iotivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

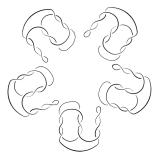
 00000
 00000
 0000
 0000
 0000
 0000
 0000

Khovanov-Jacobsson classes

Theorem (S.-Swann '21)

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 9_{46} (or boundary connect summing the slices).



This can also be done with $\#_n(6_1)$, or even by using combinations of 9_{46} and 6_1 .

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Idea:

Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- ullet So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot

Theorem (S.-Swann '21)

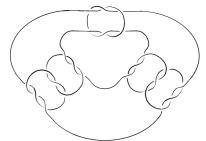
There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- ullet So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes

Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

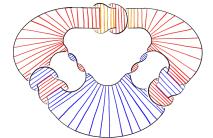
- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- ullet So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes



Theorem (S.-Swann '21)

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- ullet So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes



Theorem (Swann '10)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_\Sigma = 0$ then K is not slice.

Theorem (Swann '10)

If
$$\Sigma \colon \emptyset \to K$$
 has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_\Sigma = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Theorem (Swann '10)

If
$$\Sigma \colon \emptyset \to K$$
 has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_\Sigma = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number 1 knots)

Theorem (Swann '10)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_\Sigma = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D\circ \Sigma.$

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number 1 knots)

Corollary (Swann '10)

For $p,q,r \geq 3$ and odd, the pretzel knot P(p,q,r) is not slice.

Theorem (Swann '10)

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_\Sigma = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number 1 knots)

Corollary (Swann '10)

For $p,q,r \geq 3$ and odd, the pretzel knot P(p,q,r) is not slice.

Corollary (Swann '10)

For $p, q \leq -3$ and odd, the pretzel knot P(p, q, 1) is not slice.

Downside to Khovanov-Jacobsson classes:

Downside to Khovanov-Jacobsson classes:

• Hard to calculate...

Downside to Khovanov-Jacobsson classes:

- Hard to calculate...
- Hard to distinguish...

Downside to Khovanov-Jacobsson classes:

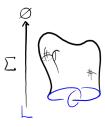
- Hard to calculate...
- Hard to distinguish...

Is there a better way?

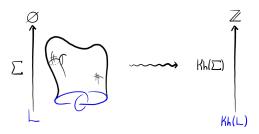
Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

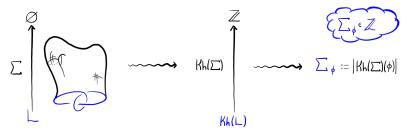


Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$



Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathsf{Kh}(L) \to \mathbb{Z}$

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$



Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathsf{Kh}(L) \to \mathbb{Z}$

Choose a class $\phi \in \mathsf{Kh}(L)$, and note that $\mathsf{Kh}(\Sigma)(\phi) \in \mathbb{Z}$ is an up-to-sign invariant of the (relative) isotopy class of Σ .

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

$$\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$$

is an invariant of the boundary-preserving isotopy class of Σ .

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

$$\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$$

is an invariant of the boundary-preserving isotopy class of Σ .

Questions:

Do these invariants distinguish any surfaces?

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

$$\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$$

is an invariant of the boundary-preserving isotopy class of Σ .

Questions:

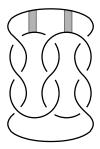
Do these invariants distinguish any surfaces? Are they better than Khovanov-Jacobsson classes?

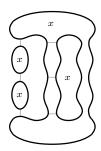
Theorem (Hayden-S. '21)

The pair of slice disks D_{ℓ} and D_{τ} for the knot K (below) induce distinct maps on Khovanov homology, distinguished by the given class $\phi \in \mathsf{Kh}(K)$, and therefore, are not isotopic rel boundary.

Theorem (Hayden-S. '21)

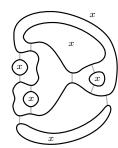
The pair of slice disks D_ℓ and D_τ for the knot K (below) induce distinct maps on Khovanov homology, distinguished by the given class $\phi \in \mathsf{Kh}(K)$, and therefore, are not isotopic rel boundary.





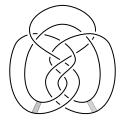
Theorem (Hayden-S. '21)

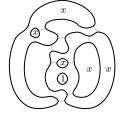
The pair of slice disks D_{ℓ} and D_{τ} for the knot K (below) induce distinct maps on Khovanov homology, distinguished by the given class $\phi \in \mathsf{Kh}(K)$, and therefore, are not isotopic rel boundary.



Theorem (Hayden-S. '21)

The pair of slice disks D_ℓ and D_τ for the knot K (below) induce distinct maps on Khovanov homology, distinguished by the given class $\phi \in \mathsf{Kh}(K)$, and therefore, are not isotopic rel boundary.





 $17nh_{74}$

Fact:

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Fact:

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Fact:

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

 Iotivation
 Background
 Knotted surfaces
 Results I
 Results II
 Future wo

 00000
 00000
 000000
 000000
 00000
 00000

Exotic slices

Fact:

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-S. '21)

The induced maps on Khovanov homology detect exotic pairs of slice disks.

Fact:

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-S. '21)

The induced maps on Khovanov homology detect exotic pairs of slice disks.

Can be extended to an infinite family of knots bounding pairs of ambiently non-isotopic surfaces of any genus.

Comparisons

Case 1:

- \bullet It is hard to compute KJ_{Σ}
- \bullet It is hard to compare KJ_Σ and $\mathsf{KJ}_{\Sigma'}$

Comparisons

Case 1:

- \bullet It is hard to compute KJ_{Σ}
- \bullet It is hard to compare KJ_Σ and $\mathsf{KJ}_{\Sigma'}$

Case 2:

- ullet By choosing ϕ wisely, it is easier to compute Σ_ϕ
- Comparing integers is easy

Table of Contents

- Motivation
- 2 Khovanov homology of surfaces
- 3 Khovanov homology of knotted surfaces
- 4 Khovanov homology of slice disks: Khovanov-Jacobsson classes
- 6 Khovanov homology of slice disks: reverse cobordisms
- 6 Future work

• explore relationship between KJ-classes and reverse cobordisms

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)
- study relationship with other invariants (e.g. s-invariant or knot Floer homology)

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)
- study relationship with other invariants (e.g. s-invariant or knot Floer homology)
- study slice obstruction from Khovanov-Jacobsson classes

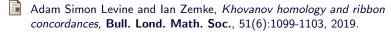
Thank You!

Thank you!

Bibliography I

- Characterisation of homotopy ribbon discs, Adv. Math., 391:Paper No. 107960, 2021.
- Kyle Hayden, Corks, covers, and complex curves, arXiv:2107.06856, 2021.
- Kyle Hayden and Isaac Sundberg, *Khovanov homology and exotic surfaces in the 4-ball*, arXiv:2108.04810, 2021.
- Magnus Jacobsson, *An invariant of link cobordisms from Khovanov homology*, **Algebr. Geom. Topol.**, 4:1211-1251, 2004.
- András Juhász and Ian Zemke, Distinguishing slice disks using knot floer homology, Seceta Math. (N.S.),20(1), 2020.
- Mikhail Khovanov, *A categorification of the Jones polynomial*, **Duke Math. J.**, 101(3):359-426, 2000.
- Mikhail Khovanov, *An invariant of tangle cobordisms*, **Transactions of the American Mathematical Society**, 358(1):315-327, 2006.

Bibliography II



- Allison N. Miller and Mark Powell, Stabilization distance between surfaces, *Enseign. Math.*, **65**:397-440, 2020.
- Lisa Piccirillo, *The Conway knot is not slice*, **Ann. of Math.** (2), 191(2):581-591, 2020.
- Jacob Rasmussen, *Khovanov's invariant for closed surfaces*, arXiv:math/0502527, 2005.
- Isaac Sundberg and Jonah Swann, *Relative Khovanov-Jacobsson classes*, arXiv:2103.01438, 2021.
- Jonah Swann, Relative Khovanov-Jacobsson classes of spanning surfaces, Ph.D. Thesis, Bryn Mawr College, 2010.
- Kokoro Tanaka, *Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory*, **Proc. Amer. Math. Soc.**, 134(12):3685–3689, 2005.