The Khovanov homology of slice disks

Isaac Sundberg Collaborators: Jonah Swann & Kyle Hayden

Bryn Mawr College

Duke Geometry & Topology Seminar

24 January 2022

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Table of (Contents				

- 2 Khovanov homology of surfaces
- Shovanov homology of knotted surfaces
- Movanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Table of	Contents				

Motivation

2 Khovanov homology of surfaces

3 Khovanov homology of knotted surfaces

- Movanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivation	for slice dis	ks			

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivation	n for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivatio	n for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	00000000	00000	00000
Motivatio	on for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivatio	on for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivatio	on for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A sphere in the 4-ball might look like:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivatio	n for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A torus in the 4-ball might look like:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivatio	n for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A torus in the 4-ball might look like:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Motivati	on for slice dis	ks			

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Recall: We can view the 3-sphere and 4-ball as follows:

- $S^3 = \mathbb{R}^3 \cup \{\infty\}$
- $B^4 = S^3 \times [0,1]/S^3 \times \{0\}$

This allows us to view surfaces $F \subset B^4$ by their level sets $F_i = F \cap (S^3 \times \{i\})$.

Example: A torus in the 4-ball might look like:

Takeaway: We can answer this question by describing the level sets of a disk D.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer: Yes, always!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer: Yes, always!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer: Yes, always!

Classic Question:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer: Yes, always!

Classic Question:

Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Definition of	a slice disk				

Given a knot K in the 3-sphere $S^3,$ when does K bound a disk D properly embedded in the 4-ball $B^4?$

Answer: Yes, always!

Classic Question:

Given a knot K in the 3-sphere S^3 , when does K bound a **smooth** disk D properly embedded in the 4-ball B^4 ?

Definition

A knot $K \subset S^3$ that bounds a smooth, properly embedded disk $D \subset B^4$ is a **slice knot** and D is a **slice disk**.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

A second slice D_r can be described similarly, by performing the *band move* on the right-hand-side of 9_{46} .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

A second slice D_r can be described similarly, by performing the *band move* on the right-hand-side of 9_{46} . We can see these disks pushed into S^3 as:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Example of a	a slice disk				

The knot 9_{46} is slice, with slice disk D_ℓ described by the following level sets:

A second slice D_r can be described similarly, by performing the *band move* on the right-hand-side of 9_{46} . We can see these disks pushed into S^3 as:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence of slice disks					

Follow-up Question:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	e of slice dis	ks			

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalenc	e of slice dis	ks			

Follow-up Question:

Are D_{ℓ} and D_r isotopic?

Answer:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	of slice disks				

Answer:

Yes - by a rotation!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	e of slice dis	ks			

Answer:

Yes - by a rotation!

Follow-up Question:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	of slice disks				

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	of slice disks				

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	of slice disks				

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

Maybe? Not exactly easy to tell without doing some math...

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Equivalence	of slice disks				

Answer:

Yes - by a rotation!

Follow-up Question:

Are D_{ℓ} and D_r isotopic rel boundary (i.e. leaving 9_{46} fixed)?

Answer:

Maybe? Not exactly easy to tell without doing some math...

We need techniques for studying surfaces up to boundary-preserving isotopy!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Methods for studying slice disks					

There are multiple ways to study slice disks up to boundary-preserving isotopy:

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
00000	000000	0000	0000000	00000	00000
Methods for	or studving s	lice disks			

There are multiple ways to study slice disks up to boundary-preserving isotopy:

• fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Methods f	for studying s	lice disks			

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)

Methods f	or studving s	lico disks			
00000	000000	0000	0000000	00000	00000
Motivation	Background	Knotted surfaces	Results I	Results II	Future work

iviethods for studying slice disks

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)

	and the second second	- P. 1			
000000	000000	0000	0000000	00000	00000
Motivation	Background	Knotted surfaces	Results I	Results II	Future work

Methods for studying slice disks

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)
- knot Floer homology (e.g. Juhasz-Zemke)

	1. I. I. I. I.	10 A			
000000	000000	0000	0000000	00000	00000
Motivation Back	Background	Knotted surfaces	Results I	Results II	Future work

Methods for studying slice disks

- fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)
- Alexander modules (e.g. Miller-Powell)
- gauge theory (e.g. Akbulut)
- knot Floer homology (e.g. Juhasz-Zemke)
- Khovanov homology

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Table of O	Contents				

1 Motivation

2 Khovanov homology of surfaces

3 Khovanov homology of knotted surfaces

- Movanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	00000000	00000	00000
Link cobor	disms				

Definition. A link cobordism $\Sigma: L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0, 1]$ with boundary a pair $(i \in \{0, 1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Link cobor	rdisms				

Definition. A link cobordism $\Sigma: L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0, 1]$ with boundary a pair $(i \in \{0, 1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Link cobo	rdisms				

Definition. A link cobordism $\Sigma: L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Link cobor	rdisms				

Definition. A link cobordism $\Sigma: L_0 \to L_1$ is a smooth, compact, oriented, properly embedded surface $\Sigma \subset S^3 \times [0,1]$ with boundary a pair $(i \in \{0,1\})$ of oriented links $L_i = \Sigma \cap (S^3 \times \{i\})$.

Examples: slices $(\emptyset \to K)$, closed surfaces $(\emptyset \to \emptyset)$, Seifert surfaces $(\emptyset \to K)$

Definition. A link cobordism $\Sigma: L_0 \to L_1$ can be represented as a **movie**: a finite sequence of diagrams $\{D_{t_i}\}_{i=0}^n$, with each successive pair related by an isotopy, Morse move, or Reidemeister move.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Idea of Khov	vanov homo	ology			

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Idea of K	hovanov homo	ology			

• links are assigned chain complexes with associated homology groups (or more generally, *R*-modules)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Idea of KI	hovanov homo	ology			

- links are assigned chain complexes with associated homology groups (or more generally, *R*-modules)
- link cobordisms are assigned chain maps with induced homomorphisms (or more generally, *R*-linear maps)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Idea of K	(hovanov homo	logy			

- links are assigned chain complexes with associated homology groups (or more generally, *R*-modules)
- link cobordisms are assigned chain maps with induced homomorphisms (or more generally, R-linear maps)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov h	omology o	of links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex $\mathsf{CKh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

How do we define this chain complex?

 $\bullet\,$ Choose a diagram D for your link

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology of	⁻ links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Choose a diagram D for your link
- Smooth each crossing \succsim in D as a $0\text{-smoothing} \succsim$ or a $1\text{-smoothing} \)($

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Choose a diagram D for your link
- Smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing \rangle (
- \bullet Label each resulting component with a $1 \mbox{ or an } x$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- $\bullet\,$ Choose a diagram D for your link
- Smooth each crossing \swarrow in D as a 0-smoothing \precsim or a 1-smoothing \rangle (
- \bullet Label each resulting component with a $1~{\rm or}$ an x
- Generate $\mathcal{C}\mathsf{Kh}(D)$ over \mathbbm{Z} with all possible *labeled smoothings*

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov h	omology o	of links			

A diagram D of an oriented link L induces a chain complex $\mathsf{CKh}(D)$ with homology $\mathsf{Kh}(D)$, called the Khovanov homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

Properties:

• Different diagrams have isomorphic Khovanov homology (we write Kh(L) to mean: choose a diagram D for L and consider Kh(D))

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write Kh(L) to mean: choose a diagram D for L and consider Kh(D))
- We set $\mathcal{C}\mathsf{Kh}(\emptyset) = \mathbb{Z}$ and $\mathsf{Kh}(\emptyset) = \mathbb{Z}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write Kh(L) to mean: choose a diagram D for L and consider Kh(D))
- We set $\mathcal{C}\mathsf{Kh}(\emptyset) = \mathbb{Z}$ and $\mathsf{Kh}(\emptyset) = \mathbb{Z}$
- There is a bigrading $\mathcal{C}\mathsf{Kh}^{h,q}(D)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f links			

A diagram D of an oriented link L induces a chain complex CKh(D) with homology Kh(D), called the Khovanov homology.

- Different diagrams have isomorphic Khovanov homology (we write Kh(L) to mean: choose a diagram D for L and consider Kh(D))
- We set $\mathcal{C}\mathsf{Kh}(\emptyset) = \mathbb{Z}$ and $\mathsf{Kh}(\emptyset) = \mathbb{Z}$
- There is a bigrading $\mathcal{C}\mathsf{Kh}^{h,q}(D)$
- There is a differential $d \colon \mathcal{C}\mathsf{Kh}^{h,q}(D) \to \mathcal{C}\mathsf{Kh}^{h+1,q}(D)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov ł	nomology o	of surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $\mathsf{Kh}(\Sigma)$ on homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov I	nomology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

How do we define these chain maps?

• The diagrams D_{t_i} in the movie each have an associated chain complex

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

- The diagrams D_{t_i} in the movie each have an associated chain complex
- \bullet Adjacent frames $D_{t_i} \to D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma \colon L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

- The diagrams D_{t_i} in the movie each have an associated chain complex
- \bullet Adjacent frames $D_{t_i} \to D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves
- Define chain maps for each of these moves

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov I	nomology c	of surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

- The diagrams D_{t_i} in the movie each have an associated chain complex
- \bullet Adjacent frames $D_{t_i} \to D_{t_{i+1}}$ are related by an isotopy, Morse move, or Reidemeister moves
- Define chain maps for each of these moves
- Compose these chain maps to produce $\mathcal{C}\mathsf{Kh}(\Sigma)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov I	nomology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	homology o	f surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0)\to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov h	nomology (of surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0)\to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

• Generally, they are difficult to compute...

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov h	nomology (of surfaces			

A movie $\{D_{t_i}\}_{i=0}^n$ of a link cobordism $\Sigma: L_0 \to L_1$ induces a chain map

 $\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}(D_0)\to \mathcal{C}\mathsf{Kh}(D_1)$

with induced homomorphism $Kh(\Sigma)$ on homology.

Properties:

• This map is also bigraded:

$$\mathcal{C}\mathsf{Kh}(\Sigma)\colon \mathcal{C}\mathsf{Kh}^{h,q}(D_0)\to \mathcal{C}\mathsf{Kh}^{h,q+\chi(\Sigma)}(D_1)$$

- Generally, they are difficult to compute...
- But they have one very useful property!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Invariance					

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Invariance					

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:
Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Invariance					

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:

Distinguish link cobordisms Σ,Σ' up to **smooth** isotopy rel boundary by showing their induced maps are distinct $\mathsf{Kh}(\Sigma)\neq\pm\mathsf{Kh}(\Sigma')$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	00000	0000	0000000	00000	00000
Invariance					

Theorem (Jacobsson '04, Bar-Natan '05, Khovanov '06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up to sign, under smooth boundary-preserving isotopy of Σ .

Goal:

Distinguish link cobordisms Σ, Σ' up to **smooth** isotopy rel boundary by showing their induced maps are distinct $\mathsf{Kh}(\Sigma) \neq \pm \mathsf{Kh}(\Sigma')$

$$\mathsf{Kh}(\Sigma) \neq \pm \mathsf{Kh}(\Sigma') \implies \Sigma \not\simeq_\partial \ \Sigma'$$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Table of (Contents				

1 Motivation

2 Khovanov homology of surfaces

Skinetic Stress Stre

4 Khovanov homology of slice disks: Khovanov-Jacobsson classes

5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	Jacobsson n	umbers			

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson n	umbers			

Can these induced maps distinguish (closed) knotted surfaces in B^4 ?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	Jacobsson n	umbers			

Can these induced maps distinguish (closed) knotted surfaces in B^4 ?

• A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	Jacobsson n	umbers			

Can these induced maps distinguish (closed) knotted surfaces in B^4 ?

- A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.
- It induces a map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	-Jacobsson n	umbers			

Can these induced maps distinguish (closed) knotted surfaces in B^4 ?

- A knotted surface Σ can be regarded as a link cobordism $\Sigma \colon \emptyset \to \emptyset$.
- It induces a map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathbb{Z}$
- This map is determined by $\mathsf{Kh}(\Sigma)(1) \in \mathbb{Z}$, so this integer is an up-to-sign invariant of the (ambient) isotopy class of Σ

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Rasmussen-	Tanaka				

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

 $\mathsf{KJ}_\Sigma:=|\mathsf{Kh}(\Sigma)(1)|\in\mathbb{Z}$

is an invariant of the ambient isotopy class of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Rasmussen-	Tanaka				

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

 $\mathsf{KJ}_{\Sigma}:=|\mathsf{Kh}(\Sigma)(1)|\in\mathbb{Z}$

is an invariant of the ambient isotopy class of Σ .

Question. Do Khovanov-Jacobsson numbers distinguish any knotted surfaces?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Rasmussen-	Tanaka				

Lemma

For a link cobordism $\Sigma \colon \emptyset \to \emptyset$, the Khovanov-Jacobsson number

 $\mathsf{KJ}_{\Sigma}:=|\mathsf{Kh}(\Sigma)(1)|\in\mathbb{Z}$

is an invariant of the ambient isotopy class of Σ .

Question. Do Khovanov-Jacobsson numbers distinguish any knotted surfaces?

Theorem (Rasmussen '05, Tanaka '05)

Khovanov-Jacobsson numbers of connected Σ are determined by genus:

• if
$$g(\Sigma) = 1$$
, then $\mathsf{KJ}_{\Sigma} = 2$

• if $g(\Sigma) \neq 1$, then $\mathsf{KJ}_{\Sigma} = 0$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Follow the same procedure for surfaces with boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Follow the same procedure for surfaces with boundary.

```
A (nice) surface \Sigma \subset B^4 with boundary L \subset S^3 can be regarded as:
```

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Follow the same procedure for surfaces with boundary.

```
A (nice) surface \Sigma \subset B^4 with boundary L \subset S^3 can be regarded as:
```

a. a link cobordism $\Sigma \colon \emptyset \to L$, or

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Follow the same procedure for surfaces with boundary.

A (nice) surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. its reverse cobordism $\Sigma \colon L \to \emptyset$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Cases					

Follow the same procedure for surfaces with boundary.

A (nice) surface $\Sigma \subset B^4$ with boundary $L \subset S^3$ can be regarded as:

- a. a link cobordism $\Sigma \colon \emptyset \to L$, or
- b. its reverse cobordism $\Sigma \colon L \to \emptyset$

We consider these cases separately.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Table of (Contents				

1 Motivation

2 Khovanov homology of surfaces

3 Khovanov homology of knotted surfaces

Mhovanov homology of slice disks: Khovanov-Jacobsson classes

5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	-Jacobsson cl	asses			

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	-Jacobsson cl	asses			

Consider the induced map $\mathsf{Kh}(\Sigma)\colon \mathbb{Z}\to\mathsf{Kh}(L)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathbb{Z} \to \mathsf{Kh}(L)$

This map is determined by $\mathsf{Kh}(\Sigma)(1) \in \mathsf{Kh}(L)$, so this homology class is an up-to-sign invariant of the (relative) isotopy class of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

 $\mathsf{KJ}_{\Sigma} := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$

is an invariant of the boundary-preserving isotopy class of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

 $\mathsf{KJ}_{\Sigma} := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$

is an invariant of the boundary-preserving isotopy class of Σ .

Question:

Do Khovanov-Jacobsson classes distinguish any surfaces?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

Lemma

For a link cobordism $\Sigma \colon \emptyset \to L$, the Khovanov-Jacobsson class

 $\mathsf{KJ}_{\Sigma} := |\mathsf{Kh}(\Sigma)(1)| \in \mathsf{Kh}(L)$

is an invariant of the boundary-preserving isotopy class of Σ .

Question:

Do Khovanov-Jacobsson classes distinguish any surfaces?

Hopefully!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

Theorem (Swann '10, S. '20)

The slice disks D_{ℓ} and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $KJ_{D_{\ell}} \neq KJ_{D_r}$, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov	-Jacobsson cl	asses			

Theorem (Swann '10, S. '20)

The slice disks D_{ℓ} and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $KJ_{D_{\ell}} \neq KJ_{D_r}$, and therefore, are not isotopic rel boundary.

Theorem (S. '20)

The slice disks D_{ℓ} and D_r for 6_1 (below) have distinct Khovanov-Jacobsson classes $KJ_{D_{\ell}} \neq KJ_{D_r}$, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Khovanov-	Jacobsson cl	asses			

Theorem (Swann '10, S. '20)

The slice disks D_{ℓ} and D_r for 9_{46} have distinct Khovanov-Jacobsson classes $KJ_{D_{\ell}} \neq KJ_{D_r}$, and therefore, are not isotopic rel boundary.

Theorem (S. '20)

The slice disks D_{ℓ} and D_r for 6_1 (below) have distinct Khovanov-Jacobsson classes $KJ_{D_{\ell}} \neq KJ_{D_r}$, and therefore, are not isotopic rel boundary.

Note: this uniqueness is also known through other techniques.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Calculatio	on for 9_{46}				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

The 2^n slices of $\#_n(9_{46})$ have distinct Khovanov-Jacobsson classes, and therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 9_{46} (or boundary connect summing the slices).

This can also be done with $\#_n(6_1)$, or even by using combinations of 9_{46} and 6_1 .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Idea:
Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	-Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

Idea:

• Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov-	Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Khovanov	-Jacobsson cl	asses			

There are prime knots with 2^n slices having distinct Khovanov-Jacobsson classes, and therefore, they are not isotopic rel boundary.

- Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)
- Ribbon concordances induce injections on Khovanov homology (Levine-Zemke)
- So, extend the 2^n slices for $\#_n(9_{46})$ by a ribbon-concordance to a prime knot
- Slices will continue to have distinct Khovanov-Jacobsson classes

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructi	ng sliceness			

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructing s	liceness			

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_{\Sigma} = 0$ then K is not slice.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructing	sliceness			

If $\Sigma \colon \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_{\Sigma} = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructing s	liceness			

If $\Sigma : \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_{\Sigma} = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number $1\ \rm knots)$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructing s	liceness			

If $\Sigma : \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_{\Sigma} = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number $1\ \rm knots)$

Corollary (Swann '10)

For $p, q, r \geq 3$ and odd, the pretzel knot P(p, q, r) is not slice.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	00000000	00000	00000
Application:	Obstructing s	liceness			

If $\Sigma : \emptyset \to K$ has genus $g(\Sigma) = 1$ and $\mathsf{KJ}_{\Sigma} = 0$ then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to $D \circ \Sigma$.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead doubles, unknotting number $1\ \rm knots)$

Corollary (Swann '10)

For $p, q, r \geq 3$ and odd, the pretzel knot P(p, q, r) is not slice.

Corollary (Swann '10)

For $p,q \leq -3$ and odd, the pretzel knot P(p,q,1) is not slice.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Are we sti	ll on case 1?				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Are we sti	ill on case 1?				

• Hard to calculate...

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Are we st	ill on case 1?				

- Hard to calculate...
- Hard to distinguish...

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Are we sti	ll on case 1?				

- Hard to calculate...
- Hard to distinguish...

Is there a better way?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Table of (Contents				

1 Motivation

2 Khovanov homology of surfaces

3 Khovanov homology of knotted surfaces

4 Khovanov homology of slice disks: Khovanov-Jacobsson classes

5 Khovanov homology of slice disks: reverse cobordisms

6 Future work

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse cob	ordism				

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse col	oordism				

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Consider the induced map $\mathsf{Kh}(\Sigma)\colon\mathsf{Kh}(L)\to\mathbb{Z}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse cob	ordism				

Case 2: Consider a link cobordism $\Sigma \colon L \to \emptyset$

Consider the induced map $\mathsf{Kh}(\Sigma) \colon \mathsf{Kh}(L) \to \mathbb{Z}$

Choose a class $\phi \in \operatorname{Kh}(L)$, and note that $\operatorname{Kh}(\Sigma)(\phi) \in \mathbb{Z}$ is an up-to-sign invariant of the (relative) isotopy class of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse col	bordism				

Case 2: Consider a link cobordism $\Sigma: L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

 $\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$

is an invariant of the boundary-preserving isotopy class of Σ .

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse cob	ordism				

Case 2: Consider a link cobordism $\Sigma: L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

 $\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$

is an invariant of the boundary-preserving isotopy class of Σ .

Questions:

Do these invariants distinguish any surfaces?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Reverse cob	ordism				

Case 2: Consider a link cobordism $\Sigma: L \to \emptyset$

Lemma

For a link cobordism $\Sigma \colon L \to \emptyset$ and a class $\phi \in \mathsf{Kh}(L)$, the integer

 $\Sigma_{\phi} := |\mathsf{Kh}(\Sigma)(\phi)| \in \mathbb{Z}$

is an invariant of the boundary-preserving isotopy class of Σ .

Questions:

Do these invariants distinguish any surfaces? Are they better than Khovanov-Jacobsson classes?

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Quick results	5				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	0000	00000
Quick results	5				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Quick results	5				

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	0000	00000
Quick results	5				

The pair of slice disks D_{ℓ} and D_r for the knot K (below) induce distinct maps on Khovanov homology, distinguished by the given class $\phi \in Kh(K)$, and therefore, are not isotopic rel boundary.

 $15n_{103488}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Quick results	5				

 $17nh_{74}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Exotic slices					

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Exotic slices					

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Exotic slices					

The slices for 6_1 , 9_{46} , and $15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Exotic slices					

The slices for $6_1,\,9_{46},\,{\rm and}\,\,15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-S. '21)

The induced maps on Khovanov homology detect exotic pairs of slice disks.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Exotic slices					

The slices for $6_1,\,9_{46},\,{\rm and}\,\,15n_{103488}$ are not even topologically isotopic rel boundary.

Definition

A pair of slice disks are *exotic* if they are topologically isotopic rel boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden '21)

The slices for $17nh_{74}$ are topologically isotopic rel boundary.

Corollary (Hayden-S. '21)

The induced maps on Khovanov homology detect exotic pairs of slice disks.

Can be extended to an infinite family of knots bounding pairs of ambiently non-isotopic surfaces of any genus.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Comparisons					

Case 1:

- \bullet It is hard to compute KJ_Σ
- \bullet It is hard to compare KJ_Σ and $\mathsf{KJ}_{\Sigma'}$

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Comparisons					

Case 1:

- \bullet It is hard to compute KJ_Σ
- \bullet It is hard to compare KJ_{Σ} and $KJ_{\Sigma'}$

Case 2:

- $\bullet\,$ By choosing ϕ wisely, it is easier to compute Σ_ϕ
- Comparing integers is easy

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Table of	Contents				

1 Motivation

2 Khovanov homology of surfaces

3 Khovanov homology of knotted surfaces

- Movanov homology of slice disks: Khovanov-Jacobsson classes
- 5 Khovanov homology of slice disks: reverse cobordisms

6 Future work
Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

• explore relationship between KJ-classes and reverse cobordisms

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)
- study relationship with other invariants (e.g. *s*-invariant or knot Floer homology)

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Future work					

- explore relationship between KJ-classes and reverse cobordisms
- tweak the algebra (e.g. annular Khovanov homology)
- tweak the topology (slice disks in different 4-manifolds)
- study different families of disks (rolling, spinning, symmetries)
- study relationship with other invariants (e.g. *s*-invariant or knot Floer homology)
- study slice obstruction from Khovanov-Jacobsson classes

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Thank You!					

Thank you!

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Bibliography	1				

- D Bar-Natan, *Khovanov's homology for tangles and cobordisms*, **Geom. Topol.**, 9:1443-1499, 2005.
- *Characterisation of homotopy ribbon discs*, **Adv. Math.**, 391:Paper No. 107960, 2021.
- Kyle Hayden, *Corks, covers, and complex curves*, arXiv:2107.06856, 2021.
- Kyle Hayden and Isaac Sundberg, *Khovanov homology and exotic surfaces in the 4-ball*, arXiv:2108.04810, 2021.
 - Magnus Jacobsson, An invariant of link cobordisms from Khovanov homology, Algebr. Geom. Topol., 4:1211-1251, 2004.
- - András Juhász and Ian Zemke, Distinguishing slice disks using knot floer homology, Seceta Math. (N.S.),20(1), 2020.
- Mikhail Khovanov, *A categorification of the Jones polynomial*, **Duke Math.** J., 101(3):359-426, 2000.
- Mikhail Khovanov, *An invariant of tangle cobordisms*, **Transactions of the American Mathematical Society**, 358(1):315-327, 2006.

Motivation	Background	Knotted surfaces	Results I	Results II	Future work
000000	000000	0000	0000000	00000	00000
Bibliography	П				

- Adam Simon Levine and Ian Zemke, *Khovanov homology and ribbon concordances*, **Bull. Lond. Math. Soc.**, 51(6):1099-1103, 2019.
- Allison N. Miller and Mark Powell, Stabilization distance between surfaces, Enseign. Math., 65:397-440, 2020.
- Lisa Piccirillo, The Conway knot is not slice, Ann. of Math. (2), 191(2):581-591, 2020.
 - Jacob Rasmussen, *Khovanov's invariant for closed surfaces*, arXiv:math/0502527, 2005.
 - Isaac Sundberg and Jonah Swann, *Relative Khovanov-Jacobsson classes*, arXiv:2103.01438, 2021.
 - Jonah Swann, Relative Khovanov-Jacobsson classes of spanning surfaces, Ph.D. Thesis, Bryn Mawr College, 2010.
 - Kokoro Tanaka, Khovanov-Jacobsson numbers and invariants of surface-knots derived from Bar-Natan's theory, Proc. Amer. Math. Soc., 134(12):3685–3689, 2005.