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Motivation for slice disks

Question:

Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example: A sphere in the 4-ball might look like:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example: A torus in the 4-ball might look like:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example: A torus in the 4-ball might look like:



Motivation Background Knotted surfaces Results I Results II Future work

Motivation for slice disks

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Recall: We can view the 3-sphere and 4-ball as follows:

S3 = R3 ∪ {∞}
B4 = S3 × [0, 1]/S3 × {0}

This allows us to view surfaces F ⊂ B4 by their level sets Fi = F ∩ (S3 × {i}).

Example: A torus in the 4-ball might look like:

Takeaway: We can answer this question by describing the level sets of a disk D.
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Definition of a slice disk

Question:
Given a knot K in the 3-sphere S3, when does K bound a disk D properly
embedded in the 4-ball B4?

Answer: Yes, always!

Classic Question:
Given a knot K in the 3-sphere S3, when does K bound a smooth disk D
properly embedded in the 4-ball B4?

Definition

A knot K ⊂ S3 that bounds a smooth, properly embedded disk D ⊂ B4

is a slice knot and D is a slice disk.
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Example of a slice disk

Example:

The knot 946 is slice, with slice disk D` described by the following level sets:

A second slice Dr can be described similarly, by performing the band move on the
right-hand-side of 946. We can see these disks pushed into S3 as:
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Equivalence of slice disks

Follow-up Question:

Are D` and Dr isotopic?

Answer:
Yes - by a rotation!

Follow-up Question:
Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)?

Answer:
Maybe? Not exactly easy to tell without doing some math...

We need techniques for studying surfaces up to boundary-preserving isotopy!
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Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

fundamental group of the compliment (e.g. Auckly-Kim-Melvin-Ruberman)

Alexander modules (e.g. Miller-Powell)

gauge theory (e.g. Akbulut)

knot Floer homology (e.g. Juhasz-Zemke)

Khovanov homology
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Link cobordisms

Definition. A link cobordism Σ: L0 → L1 is a smooth, compact, oriented,
properly embedded surface Σ ⊂ S3 × [0, 1] with boundary a pair (i ∈ {0, 1}) of
oriented links Li = Σ ∩ (S3 × {i}).

Examples: slices (∅ → K), closed surfaces (∅ → ∅), Seifert surfaces (∅ → K)

Definition. A link cobordism Σ: L0 → L1 can be represented as a movie: a finite
sequence of diagrams {Dti}ni=0, with each successive pair related by an isotopy,
Morse move, or Reidemeister move.
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Idea of Khovanov homology

Khovanov homology is a functor on link cobordisms.

links are assigned chain complexes with associated homology groups
(or more generally, R-modules)

link cobordisms are assigned chain maps with induced homomorphisms
(or more generally, R-linear maps)
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Khovanov homology of links

Theorem (Khovanov ’00)

A diagram D of an oriented link L induces a chain complex CKh(D) with
homology Kh(D), called the Khovanov homology.

Properties:

Different diagrams have isomorphic Khovanov homology
(we write Kh(L) to mean: choose a diagram D for L and consider Kh(D))

We set CKh(∅) = Z and Kh(∅) = Z
There is a bigrading CKhh,q(D)

There is a differential d : CKhh,q(D)→ CKhh+1,q(D)
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Khovanov homology of surfaces

Theorem (Khovanov ’00)

A movie {Dti}ni=0 of a link cobordism Σ: L0 → L1 induces a chain map

CKh(Σ): CKh(D0)→ CKh(D1)

with induced homomorphism Kh(Σ) on homology.
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Theorem (Khovanov ’00)

A movie {Dti}ni=0 of a link cobordism Σ: L0 → L1 induces a chain map

CKh(Σ): CKh(D0)→ CKh(D1)

with induced homomorphism Kh(Σ) on homology.
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Invariance

Theorem (Jacobsson ’04, Bar-Natan ’05, Khovanov ’06)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up
to sign, under smooth boundary-preserving isotopy of Σ.

Goal:
Distinguish link cobordisms Σ,Σ′ up to smooth isotopy rel boundary by showing
their induced maps are distinct Kh(Σ) 6= ±Kh(Σ′)

Kh(Σ) 6= ±Kh(Σ′) =⇒ Σ 6'∂ Σ′
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Khovanov-Jacobsson numbers

Question:

Can these induced maps distinguish (closed) knotted surfaces in B4?

A knotted surface Σ can be regarded as a link cobordism Σ: ∅ → ∅.

It induces a map Kh(Σ): Z→ Z
This map is determined by Kh(Σ)(1) ∈ Z, so this integer is an up-to-sign
invariant of the (ambient) isotopy class of Σ
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Rasmussen-Tanaka

Lemma

For a link cobordism Σ: ∅ → ∅, the Khovanov-Jacobsson number

KJΣ := |Kh(Σ)(1)| ∈ Z

is an invariant of the ambient isotopy class of Σ.

Question. Do Khovanov-Jacobsson numbers distinguish any knotted surfaces?

Theorem (Rasmussen ’05, Tanaka ’05)

Khovanov-Jacobsson numbers of connected Σ are determined by genus:

if g(Σ) = 1, then KJΣ = 2

if g(Σ) 6= 1, then KJΣ = 0
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Cases

Idea:

Follow the same procedure for surfaces with boundary.

A (nice) surface Σ ⊂ B4 with boundary L ⊂ S3 can be regarded as:

a. a link cobordism Σ: ∅ → L, or

b. its reverse cobordism Σ: L→ ∅

We consider these cases separately.
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Khovanov-Jacobsson classes

Case 1: Consider a link cobordism Σ: ∅ → L

Lemma

For a link cobordism Σ: ∅ → L, the Khovanov-Jacobsson class

KJΣ := |Kh(Σ)(1)| ∈ Kh(L)

is an invariant of the boundary-preserving isotopy class of Σ.

Question:
Do Khovanov-Jacobsson classes distinguish any surfaces?

Hopefully!
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Khovanov-Jacobsson classes

Theorem (Swann ’10, S. ’20)

The slice disks D` and Dr for 946 have distinct Khovanov-Jacobsson classes
KJD` 6= KJDr , and therefore, are not isotopic rel boundary.

Theorem (S. ’20)

The slice disks D` and Dr for 61 (below) have distinct Khovanov-Jacobsson
classes KJD` 6= KJDr , and therefore, are not isotopic rel boundary.

Note: this uniqueness is also known through other techniques.
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Calculation for 946
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Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

The 2n slices of #n(946) have distinct Khovanov-Jacobsson classes, and
therefore, are not isotopic rel boundary.

This can also be done with #n(61), or even by using combinations of 946 and 61.
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boundary connect summing the slices).

This can also be done with #n(61), or even by using combinations of 946 and 61.



Motivation Background Knotted surfaces Results I Results II Future work

Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

The 2n slices of #n(946) have distinct Khovanov-Jacobsson classes, and
therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 946 (or
boundary connect summing the slices).

This can also be done with #n(61), or even by using combinations of 946 and 61.



Motivation Background Knotted surfaces Results I Results II Future work

Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

The 2n slices of #n(946) have distinct Khovanov-Jacobsson classes, and
therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 946 (or
boundary connect summing the slices).

This can also be done with #n(61), or even by using combinations of 946 and 61.



Motivation Background Knotted surfaces Results I Results II Future work

Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

The 2n slices of #n(946) have distinct Khovanov-Jacobsson classes, and
therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 946 (or
boundary connect summing the slices).

This can also be done with #n(61), or even by using combinations of 946 and 61.



Motivation Background Knotted surfaces Results I Results II Future work

Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

The 2n slices of #n(946) have distinct Khovanov-Jacobsson classes, and
therefore, are not isotopic rel boundary.

Slices are obtained by choosing one of the band moves for each copy of 946 (or
boundary connect summing the slices).

This can also be done with #n(61), or even by using combinations of 946 and 61.



Motivation Background Knotted surfaces Results I Results II Future work

Khovanov-Jacobsson classes

Theorem (S.-Swann ’21)

There are prime knots with 2n slices having distinct Khovanov-Jacobsson classes,
and therefore, they are not isotopic rel boundary.

Idea:

Every knot is ribbon concordant to a prime knot (Kirby-Lickorish)

Ribbon concordances induce injections on Khovanov homology
(Levine-Zemke)

So, extend the 2n slices for #n(946) by a ribbon-concordance to a prime knot

Slices will continue to have distinct Khovanov-Jacobsson classes
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Application: Obstructing sliceness

Theorem (Swann ’10)

If Σ: ∅ → K has genus g(Σ) = 1 and KJΣ = 0 then K is not slice.

Proof idea: assume K has a slice disk D and apply the absolute case to D ◦ Σ.

Note: there are classes of knots with 4-ball genus at most 1 (e.g. Whitehead
doubles, unknotting number 1 knots)

Corollary (Swann ’10)

For p, q, r ≥ 3 and odd, the pretzel knot P (p, q, r) is not slice.

Corollary (Swann ’10)

For p, q ≤ −3 and odd, the pretzel knot P (p, q, 1) is not slice.
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Corollary (Swann ’10)

For p, q, r ≥ 3 and odd, the pretzel knot P (p, q, r) is not slice.

Corollary (Swann ’10)

For p, q ≤ −3 and odd, the pretzel knot P (p, q, 1) is not slice.
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Reverse cobordism

Case 2: Consider a link cobordism Σ: L→ ∅

Lemma

For a link cobordism Σ: L→ ∅ and a class φ ∈ Kh(L), the integer

Σφ := |Kh(Σ)(φ)| ∈ Z

is an invariant of the boundary-preserving isotopy class of Σ.

Questions:
Do these invariants distinguish any surfaces?
Are they better than Khovanov-Jacobsson classes?
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Quick results

Theorem (Hayden-S. ’21)

The pair of slice disks D` and Dr for the knot K (below) induce distinct maps on
Khovanov homology, distinguished by the given class φ ∈ Kh(K), and therefore,
are not isotopic rel boundary.
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Exotic slices

Fact:
The slices for 61, 946, and 15n103488 are not even topologically isotopic rel
boundary.

Definition

A pair of slice disks are exotic if they are topologically isotopic rel boundary, but
not smoothly isotopic rel boundary.

Theorem (Hayden ’21)

The slices for 17nh74 are topologically isotopic rel boundary.

Corollary (Hayden-S. ’21)

The induced maps on Khovanov homology detect exotic pairs of slice disks.

Can be extended to an infinite family of knots bounding pairs of ambiently
non-isotopic surfaces of any genus.
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Case 2:

By choosing φ wisely, it is easier to compute Σφ

Comparing integers is easy
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Future work

explore relationship between KJ-classes and reverse cobordisms

tweak the algebra (e.g. annular Khovanov homology)

tweak the topology (slice disks in different 4-manifolds)

study different families of disks (rolling, spinning, symmetries)

study relationship with other invariants (e.g. s-invariant or knot Floer
homology)

study slice obstruction from Khovanov-Jacobsson classes
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