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Let’s start somewhere familiar: a surface ¥ C R®
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Low-dimensional topology

Seeing in 4 dimensions is hard...
Technique: move down a dimension, to see what’s happening.

Let's start somewhere familiar: a surface ¥ C R®, can be described by its level
sets L; = X N (R? x {i}).
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Let’s start somewhere familiar: a surface ¥ C R?, can be described by its level
sets L; = X N (R? x {i}).
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Low-dimensional topology

Seeing in 4 dimensions is hard...
Technique: move down a dimension, to see what’s happening.

Let's start somewhere familiar: a surface ¥ C R®, can be described by its level
sets L; = X N (R? x {i}).
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C X D
Let's do the same thing for surfaces in R3*!
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Low-dimensional topology

Seeing in 4 dimensions is hard...

Technique: move down a dimension, to see what’s happening.

A surface ¥ C R*

@Y%
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Low-dimensional topology

Seeing in 4 dimensions is hard...
Technique: move down a dimension, to see what’s happening.

A surface ¥ C R*, can also be described by its level sets L; = ¥ N (R® x {i}).

=
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Motivation for a slice disk

Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?
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To answer this question, we can describe a disk X by its level sets:
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Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
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Motivation for a slice disk

Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
B* = 5% x[0,1]/8* x {0}
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Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
B* = 5% x[0,1]/8* x {0}

The level sets of ¥ are then L; = ¥ N (S x {i}).
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Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
B* = 5% x[0,1]/8* x {0}

The level sets of ¥ are then L; = ¥ N (S x {i}).

Answer:
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Motivation for a slice disk

Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
B* = 5% x[0,1]/8* x {0}

The level sets of ¥ are then L; = ¥ N (S x {i}).

Answer: Always!
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Motivation for a slice disk

Question: When does a knot K in the 3-sphere S* bound a disk in the 4-ball B4?

To answer this question, we can describe a disk X by its level sets:
5% =R3U {cc}
B* = 5% x[0,1]/8* x {0}

The level sets of ¥ are then L; = ¥ N (S x {i}).

Answer: Always!



Definition of a slice disk

Classic Question:



Motivation Background Knotted surfaces p-classes @™ -classes
000e000 0000000000000 0000 0000000000 000000

Definition of a slice disk

Future
000000

Classic Question: Given a knot K in the 3-sphere S®, when does K bound a
smooth disk D properly embedded in the 4-ball B*?
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Classic Question: Given a knot K in the 3-sphere S®, when does K bound a
smooth disk D properly embedded in the 4-ball B*?

Definition

A knot K C S® that bounds a smooth, properly embedded disk D c B*
is a slice knot and D is a slice disk.
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Classic Question: Given a knot K in the 3-sphere S®, when does K bound a
smooth disk D properly embedded in the 4-ball B*?

Definition
A knot K C S® that bounds a smooth, properly embedded disk D c B*
is a slice knot and D is a slice disk.

Some knots are slice, and some are not!
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Classic Question: Given a knot K in the 3-sphere S®, when does K bound a
smooth disk D properly embedded in the 4-ball B*?

Definition
A knot K C S® that bounds a smooth, properly embedded disk D c B*
is a slice knot and D is a slice disk.

Some knots are slice, and some are not! Let’s look at an example.
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level
sets:
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

B §goo

8 S-S
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

BEEaoe

(&

Alternative descriptions:
(a)
(b)
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

B-8-8 68

o O

%

&

Alternative descriptions:

(a) As a shorthand, we can write this movie with a single band move.

(b)
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

BEEaoe

&

Alternative descriptions:

(a) As a shorthand, we can write this movie with a single band move.

(b)
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

BEEaoe

&

Alternative descriptions:
(a) As a shorthand, we can write this movie with a single band move.

(b) We can view a slice disk by pushing it into S*.

=5
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Existence of a slice disk

Example: The knot 946 is slice, with slice disk D, described by the following level

BEEaoe

&

Alternative descriptions:
(a) As a shorthand, we can write this movie with a single band move.

(b) We can view a slice disk by pushing it into S*.
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The existence of slice disks bounding a given knot K C S2 is well-understood.
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question:
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example:
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)

fee
(=8
=)
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)
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Are Dy and D, isotopic?
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)
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Are Dy and D, isotopic? Yes - by a rotation!
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)
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Are Dy and D, isotopic? Yes - by a rotation!

Are D, and D, isotopic rel boundary (i.e. leaving 946 fixed)?
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)
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Are Dy and D, isotopic? Yes - by a rotation!

Are D, and D, isotopic rel boundary (i.e. leaving 946 fixed)? No?
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K C S2 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk D, for 946.

)

fee
(=8
=)

Are Dy and D, isotopic? Yes - by a rotation!

Are D, and D, isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)
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Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:
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e fundamental group of the compliment
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e fundamental group of the compliment

@ Alexander modules
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There are multiple ways to study slice disks up to boundary-preserving isotopy:
e fundamental group of the compliment
@ Alexander modules

@ gauge theory
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Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:
e fundamental group of the compliment
@ Alexander modules
@ gauge theory

@ knot Floer homology
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Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:
e fundamental group of the compliment

Alexander modules

gauge theory

@ knot Floer homology

Khovanov homology
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Link cobordisms

Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0,1}) of
oriented links L; = ¥ N (R? x {i}).
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Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0,1}) of
oriented links L; = ¥ N (R? x {i}).
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Link cobordisms

Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0,1}) of
oriented links L; = ¥ N (R? x {i}).

Lo

Examples: slices () — K), closed surfaces () — (), Seifert surfaces () — K)
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Link cobordisms

Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0,1}) of
oriented links L; = ¥ N (R? x {i}).

b g@
) -
Lo
Examples: slices () — K), closed surfaces () — (), Seifert surfaces () — K)
Definition. A link cobordism Y: Lo — L1 can be represented as a movie: a finite

sequence of diagrams {Dy, }i-,, with each successive pair related by an isotopy,
Morse move, or Reidemeister move.



Motivation Background Knotted surfaces p-classes @™ -classes Future
0000000 0@®@00000000000 0000 0000000000 000000 000000

Link cobordisms

Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0, 1}) of
oriented links L; = ¥ N (R? x {i}).
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Lo
Examples: slices () — K), closed surfaces () — (), Seifert surfaces () — K)
Definition. A link cobordism Y: Lo — L1 can be represented as a movie: a finite

sequence of diagrams {Dy, }i-,, with each successive pair related by an isotopy,
Morse move, or Reidemeister move.
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Link cobordisms

Definition. A link cobordism X: Lo — L1 is a smooth, compact, oriented,
properly embedded surface & C R? x [0, 1] with boundary a pair (i € {0, 1}) of
oriented links L; = ¥ N (R? x {i}).

Lo (G 2

> (-

Lo
Examples: slices () — K), closed surfaces () — (), Seifert surfaces () — K)
Definition. A link cobordism Y: Lo — L1 can be represented as a movie: a finite

sequence of diagrams {Dy, }i-,, with each successive pair related by an isotopy,
Morse move, or Reidemeister move.

A
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Khovanov homology is a functor on the category of link cobordisms.
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Khovanov homology is a functor on the category of link cobordisms.

@ links are assigned chain complexes with associated homology groups
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Khovanov homology is a functor on the category of link cobordisms.
@ links are assigned chain complexes with associated homology groups

@ link cobordisms are assigned chain maps with induced homomorphisms
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Khovanov homology is a functor on the category of link cobordisms.

@ links are assigned chain complexes with associated homology groups

@ link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism Movie Chain complex | Chain map

Ly

Lo
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Idea of Khovanov homology

Khovanov homology is a functor on the category of link cobordisms.
@ links are assigned chain complexes with associated homology groups

@ link cobordisms are assigned chain maps with induced homomorphisms

Movie Chain complex | Chain map

&
&
)
D)
O
J)

Link cobordism

Ly

Lo
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Idea of Khovanov homology

Khovanov homology is a functor on the category of link cobordisms.
@ links are assigned chain complexes with associated homology groups

@ link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism Movie Chain complex | Chain map
L & e
& C(cb)
by & C(D)
o) C(EED)
L & e(e)
o C(D)
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Idea of Khovanov homology

Khovanov homology is a functor on the category of link cobordisms.
@ links are assigned chain complexes with associated homology groups
@ link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism Movie Chain complex | Chain map
L & e
g
) cE)
b & <C(C§D)
D) C(5D)
>
L & e(e)
g
o C(D)
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Idea of Khovanov homology

Khovanov homology is a functor on the category of link cobordisms.
@ links are assigned chain complexes with associated homology groups
@ link cobordisms are assigned chain maps with induced homomorphisms

Link cobordism Movie Chain complex | Chain map
Ly & <C(<93) ¢(Dy)
) ()
o e~
bY QD —eD c(%)
D) C(5D)
e
Lo & - C(Dy)
o C(D)
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Formal definition:
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Formal definition:

@ consider the cube of resolutions for D, which can be regarded as a collection

of objects and morphisms in the cobordism category (Cob?’7 L)
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Formal definition:

@ consider the cube of resolutions for D, which can be regarded as a collection

of objects and morphisms in the cobordism category (Cob?’7 L)

@ apply a topological quantum field theory F: (Cob® L) — (Modg, ®)
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Formal definition:

@ consider the cube of resolutions for D, which can be regarded as a collection

of objects and morphisms in the cobordism category (Cob?’7 L)

@ apply a topological quantum field theory F: (Cob® L) — (Modg, ®)

@ structure the resulting collection of R-modules and R-linear maps as a chain

complex and take homology
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

&b
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

&b &b

@ smooth each crossing > in D as a 0-smoothing < or a 1-smoothing ) (



Motivation Background Knotted surfaces p-classes @™ -classes
0000000 0000800000000 0000 0000000000 000000

Khovanov homology of links

Future
000000

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

b & &

@ smooth each crossing > in D as a 0-smoothing < or a 1-smoothing ) (

@ color each resulting component purple or orange
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Khovanov homology of links
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

b & &

@ smooth each crossing > in D as a 0-smoothing < or a 1-smoothing ) (

@ color each resulting component purple or orange

o generate C(D) over Z with all possible labeled smoothings
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

b & &

@ smooth each crossing > in D as a 0-smoothing < or a 1-smoothing ) (

@ color each resulting component purple or orange

generate C(D) over Z with all possible labeled smoothings

o define a differential and take homology
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

o Different diagrams have isomorphic Khovanov homology

(we write H(L) to mean: choose a diagram D for L and consider H (D))
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Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

o Different diagrams have isomorphic Khovanov homology

(we write H(L) to mean: choose a diagram D for L and consider H (D))

e Weset C(0) =Z and H(D) =Z
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

o Different diagrams have isomorphic Khovanov homology
(we write H(L) to mean: choose a diagram D for L and consider H (D))

e Weset C(0) =Z and H(D) =Z
@ There is a bigrading C™(D)
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

o Different diagrams have isomorphic Khovanov homology
(we write H(L) to mean: choose a diagram D for L and consider H (D))

e Weset C(0) =Z and H(D) =Z
@ There is a bigrading C™(D)
o There is a (co)differential d: C"7(D) — C"*9(D)
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

o Different diagrams have isomorphic Khovanov homology
(we write H(L) to mean: choose a diagram D for L and consider H (D))

e Weset C(0) =Z and H(D) =Z
@ There is a bigrading C™(D)
o There is a (co)differential d: C"7(D) — C"*9(D)

Let's take a quick look at C(31)
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Khovanov homology of links

The Khovanov chain complex of the trefoil is C(31) = Z*°



Motivation

Background Knotted surfaces p-classes @™ -classes
0000000 000000@000000 0000

0000000000 000000

Khovanov homology of links

Future
000000

The Khovanov chain complex of the trefoil is C(31) = Z*°
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The Khovanov chain complex of the trefoil is C(31) = Z*°
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The Khovanov homology of the trefoil is H(31) = Z*
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Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.
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Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:
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Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:

@ Movie diagrams D,, have associated chain complexes C(D,)
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Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:

@ Movie diagrams D,, have associated chain complexes C(D,)

@ Adjacent diagrams D;, and Dy
Reidemeister move

i1

are related by an isotopy, Morse move, or
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:
@ Movie diagrams D,, have associated chain complexes C(D,)

@ Adjacent diagrams Dy; and Dy, , are related by an isotopy, Morse move, or
Reidemeister move

o Define chain maps C(D;,) — C(Dy, ., ) for each of these moves



Motivation Background Knotted surfaces p-classes @™ -classes Future
0000000 0000000e00000 0000 0000000000 000000 000000

Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:

@ Movie diagrams D,, have associated chain complexes C(D,)

are related by an isotopy, Morse move, or

Adjacent diagrams Dy, and D,
Reidemeister move

i1

o Define chain maps C(D;,) — C(Dy, ., ) for each of these moves

@ Compose these chain maps to produce C(X): C(Do) — C(D1)
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Definition:
@ Movie diagrams D,, have associated chain complexes C(D,)

@ Adjacent diagrams Dy; and Dy, , are related by an isotopy, Morse move, or
Reidemeister move

o Define chain maps C(D;,) — C(Dy, ., ) for each of these moves

@ Compose these chain maps to produce C(X): C(Do) — C(D1)

What do these chain maps C(D:,;) — C(Dy,, ) look like?
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy,}7— of a link cobordism ¥: Lo — L1 induces a chain map
C(X): C(Do) = C(D1)

with induced homomorphism H(X) on homology.

5%
") -~ 3 (-
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Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Properties:
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Properties:

@ This map is also bigraded:
C(): " (Dg) — "X (Dy)
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Properties:

@ This map is also bigraded:
C(): " (Dg) — "X (Dy)

o Generally, they are difficult to compute...
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Properties:

@ This map is also bigraded:
C(): " (Dg) — "X (Dy)

o Generally, they are difficult to compute...

@ They are invariant under boundary-preserving isotopy
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dy, }i- of a link cobordism ¥.: Lo — L1 induces a chain map
C(X): C(Do) — C(Dn)

with induced homomorphism H(X) on homology.

Properties:

@ This map is also bigraded:
C(): " (Dg) — "X (Dy)
o Generally, they are difficult to compute...

@ They are invariant under boundary-preserving isotopy

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.




Invariance

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of X.
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.

We use this result to study link cobordisms up to boundary-preserving isotopy:
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.

We use this result to study link cobordisms up to boundary-preserving isotopy:
o find pairs of link cobordisms 3,%': Lo — L
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.

We use this result to study link cobordisms up to boundary-preserving isotopy:
o find pairs of link cobordisms 3,%': Lo — L
@ calculate their induced maps H(X) and H(X')
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.

We use this result to study link cobordisms up to boundary-preserving isotopy:
o find pairs of link cobordisms 3,%': Lo — L
@ calculate their induced maps H(X) and H(X')
@ show the induced maps are distinct H(X) # +H(X')
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism ¥ is invariant, up
to sign, under smooth boundary-preserving isotopy of 3.

We use this result to study link cobordisms up to boundary-preserving isotopy:
o find pairs of link cobordisms 3,%': Lo — L
@ calculate their induced maps H(X) and H(X')
@ show the induced maps are distinct H(X) # +H(X')

conclude ¥, ¥’ are not isotopic rel boundary
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A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:
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In general, it is (perhaps too) easy to build such link cobordisms:

@ Given X: Ly — L1, we create a new link cobordism ¥’

¢
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In general, it is (perhaps too) easy to build such link cobordisms:
@ Given X: Lo — L1, we create a new link cobordism %’

o Choose your favorite knotted 2-sphere S

RS
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In general, it is (perhaps too) easy to build such link cobordisms:
@ Given X: Lo — L1, we create a new link cobordism %’

o Choose your favorite knotted 2-sphere S

C
e
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In general, it is (perhaps too) easy to build such link cobordisms:
@ Given X: Lo — L1, we create a new link cobordism %’

@ Choose your favorite knotted 2-sphere S and connect-sum with X

G
| z#s M
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A brief remark on local knottedness

Future
000000

In general, it is (perhaps too) easy to build such link cobordisms:
e Given X: Lo — L1, we create a new link cobordism X’
@ Choose your favorite knotted 2-sphere S and connect-sum with X

@ Then X and ¥’ := 345 are (generally) not isotopic rel boundary.

G
| s#s [
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In general, it is (perhaps too) easy to build such link cobordisms:
e Given X: Lo — L1, we create a new link cobordism X’
@ Choose your favorite knotted 2-sphere S and connect-sum with X

@ Then X and ¥’ := 345 are (generally) not isotopic rel boundary.

G
| s#s [

Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under

connected sums with knotted 2-spheres.
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A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:
e Given X: Lo — L1, we create a new link cobordism X’
@ Choose your favorite knotted 2-sphere S and connect-sum with X

@ Then X and ¥’ := 345 are (generally) not isotopic rel boundary.

G
| s#s [

Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under
connected sums with knotted 2-spheres.

Takeaway: do not do this when finding %, %’



Table of Contents

© Motivation

© Khovanov homology

© Khovanov homology of knotted surfaces

@ Khovanov homology of surfaces in the 4-ball

© Khovanov homology of dual surfaces in the 4-ball

© Future work



Defining ¢-numbers

Question:
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Defining p-numbers

Question: Can the induced maps on Khovanov homology distinguish knotted
surfaces in the 4-ball, up to ambient isotopy?
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Question: Can the induced maps on Khovanov homology distinguish knotted
surfaces in the 4-ball, up to ambient isotopy?

0

Method:
@ A knotted surface ¥ C B* can be regarded as a link cobordism $: () — ()
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Defining p-numbers

Question: Can the induced maps on Khovanov homology distinguish knotted
surfaces in the 4-ball, up to ambient isotopy?

0 Z

Method:
@ A knotted surface ¥ C B* can be regarded as a link cobordism $: () — ()
@ It induces a map H(X): Z — Z, determined by H(X)(1) € Z
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Question: Can the induced maps on Khovanov homology distinguish knotted
surfaces in the 4-ball, up to ambient isotopy?

] H(E)(1) ez
A
\
b)) H(D)
] ie A

Method:
@ A knotted surface ¥ C B* can be regarded as a link cobordism $: () — ()
@ It induces a map H(X): Z — Z, determined by H(X)(1) € Z

e This integer is invariant, up to sign, under ambient isotopy of %



Defining ¢-numbers

For a link cobordism ¥: ) — (), the ¢o-number of &

p(X) :=H(E)(1) € Z

is an up-to-sign invariant of the ambient isotopy of 3.
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Lemma

For a link cobordism ¥: ) — (), the p-number of &
P(B) =H(E)(1) €Z

is an up-to-sign invariant of the ambient isotopy of 3.

Do the p-numbers distinguish any knotted surfaces?
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Defining p-numbers

Lemma

For a link cobordism ¥: ) — (), the p-number of &
P(B) =H(E)(1) €Z

is an up-to-sign invariant of the ambient isotopy of 3.

Do the p-numbers distinguish any knotted surfaces?

Can we find $o,1 C B* with ¢(Z0) # £+ ¢(Z1)?
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Defining p-numbers

Lemma

For a link cobordism ¥: ) — (), the p-number of &
p(X) :=H(X)(1) € Z

is an up-to-sign invariant of the ambient isotopy of 3.

Do the p-numbers distinguish any knotted surfaces?

Can we find $o,1 C B* with ¢(Z0) # £+ ¢(Z1)?

Theorem (Rasmussen, Tanaka)

The p-numbers associated to connected . C B* are determined by genus:
e ifg(X) =1, then p(X) =+£2
o ifg(X)#1, then p(X)= 0




Cases

Idea:



Cases

Idea: Follow the same procedure for surfaces with boundary.
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Cases

Idea: Follow the same procedure for surfaces with boundary.

A surface © C B* with boundary L C S® can be regarded as:
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Idea: Follow the same procedure for surfaces with boundary.

A surface © C B* with boundary L C S® can be regarded as:
a. a link cobordism X: 0 — L, or

f by
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Idea: Follow the same procedure for surfaces with boundary.

A surface © C B* with boundary L C S® can be regarded as:
a. a link cobordism X: 0 — L, or
b. a link cobordism ¥: L — 0

f b)) ! b
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Idea: Follow the same procedure for surfaces with boundary.

A surface © C B* with boundary L C S® can be regarded as:
a. a link cobordism X: 0 — L, or
b. a link cobordism X: L — 0

We consider these cases separately in the next two sections.

L 0

- —H |,
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Defining ¢-classes

Can the induced maps on Khovanov homology distinguish surfaces with boundary
in the 4-ball?
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Defining ¢-classes

Can the induced maps on Khovanov homology distinguish surfaces with boundary
in the 4-ball?

Method:
@ A surface £ C B* with boundary L C S® induces a link cobordism : ) — L
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Defining ¢-classes

Can the induced maps on Khovanov homology distinguish surfaces with boundary
in the 4-ball?

Method:
@ A surface £ C B* with boundary L C S® induces a link cobordism : ) — L
@ It induces a map H(X): Z — H(L), determined by H(X)(1) € H(L)
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Defining ¢-classes

Can the induced maps on Khovanov homology distinguish surfaces with boundary
in the 4-ball?

L H(2)(1) € H(L)
4
a

5 H(D)

0 1€z

Method:
@ A surface £ C B* with boundary L C S® induces a link cobordism : ) — L
@ It induces a map H(X): Z — H(L), determined by H(X)(1) € H(L)

@ This homology class is invariant, up to sign, under boundary-preserving
isotopy of X



Defining ¢-classes

For a link cobordism ¥: ) — L, the ¢-class of &

p(X) :=H(E)(1) € H(L)

is an up-to-sign invariant of the boundary-preserving isotopy class of X.
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Lemma

For a link cobordism ¥: ) — L, the p-class of &
(B) ==H(Z)(1) € H(L)

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do (p-classes distinguish any surfaces with boundary?
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Defining ¢-classes

Lemma

For a link cobordism ¥: ) — L, the p-class of &
p(X) :=H(E)(1) € H(L)

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do (p-classes distinguish any surfaces with boundary?

Can we find ¥o,1 C B* bounding a common L C S* with ¢(30) # + ¢(%1)?
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Defining ¢-classes

Lemma

For a link cobordism ¥: ) — L, the p-class of &
p(X) :=H(E)(1) € H(L)

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do (p-classes distinguish any surfaces with boundary?
Can we find ¥o,1 C B* bounding a common L C S* with ¢(30) # + ¢(%1)?

If so, we say X1 are p-distinguished.



Applications of ¢-classes

The slice disks D, and D, for 94¢ are @-distinguished, and therefore, are not
isotopic rel boundary.
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Applications of ¢-classes

Theorem (Swann, Sundberg)

The slice disks D, and D, for 946 are p-distinguished, and therefore, are not
isotopic rel boundary.
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Applications of ¢-classes

Theorem (Swann, Sundberg)

The slice disks D, and D, for 946 are p-distinguished, and therefore, are not
isotopic rel boundary.

=)
e
=

(€
(=

What do ¢(D¢) and ¢(D.) look like?
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Applications of ¢-classes

The slice disks D, and D, for 94¢ are @-distinguished, and therefore, are not
isotopic rel boundary.
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Applications of ¢-classes

Theorem (Swann, Sundberg)

The slice disks D, and D, for 94¢ are @-distinguished, and therefore, are not
isotopic rel boundary.

Theorem (Sundberg)

The slice disks D, and D, for 61 (below) are p-distinguished, and therefore,
are not isotopic rel boundary.
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Applications of ¢-classes

Theorem (Swann, Sundberg)

The slice disks D, and D, for 946 are p-distinguished, and therefore, are not
isotopic rel boundary.

Theorem (Sundberg)
The slice disks Dy and D, for 61 (below) are p-distinguished, and therefore,

are not isotopic rel boundary.
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Applications of ¢-classes

Theorem (Swann, Sundberg)

The slice disks D, and D, for 946 are p-distinguished, and therefore, are not
isotopic rel boundary.

Theorem (Sundberg)
The slice disks Dy and D, for 61 (below) are p-distinguished, and therefore,

are not isotopic rel boundary.

These knots are so nice! Are there even nicer knots out there?




Applications of ¢-classes

The 2" slice disks bounding #(946) are @-distinguished, and therefore, are not
isotopic rel boundary.
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Applications of ¢-classes

Theorem (Sundberg-Swann)

The 2" slice disks bounding #1(946) are p-distinguished, and therefore, are not
isotopic rel boundary.

Slice disks are obtained by boundary-summing copies of Dy and D,.
&j{f[ﬁ

S,
C@g &)
&
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Applications of ¢-classes

Theorem (Sundberg-Swann)

The 2" slice disks bounding the prime knot K,, (below) are o-distinguished,
and therefore, they are not isotopic rel boundary.
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Applications of ¢-classes
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Proof Idea:

@ Every knot is ribbon concordant to a prime knot [KL79]
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The 2" slice disks bounding the prime knot K,, (below) are o-distinguished,
and therefore, they are not isotopic rel boundary.

Proof Idea:
@ Every knot is ribbon concordant to a prime knot [KL79]

@ Ribbon concordances induce injections on Khovanov homology [LZ19]
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Theorem (Sundberg-Swann)

The 2" slice disks bounding the prime knot K,, (below) are o-distinguished,
and therefore, they are not isotopic rel boundary.

Proof Idea:
@ Every knot is ribbon concordant to a prime knot [KL79]
@ Ribbon concordances induce injections on Khovanov homology [LZ19]

@ So, extend the 2" slice disks for K = #4(946) by a ribbon-concordance
C: K - K, to a prime knot K,
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Theorem (Sundberg-Swann)

The 2™ slice disks bounding the prime knot K, (below) are ¢-distinguished,
and therefore, they are not isotopic rel boundary.

Proof Idea:
@ Every knot is ribbon concordant to a prime knot [KL79]
@ Ribbon concordances induce injections on Khovanov homology [LZ19]

@ So, extend the 2" slice disks for K = #4(946) by a ribbon-concordance
C: K - K, to a prime knot K,

@ These slice disks are pairwise @-distinguished using injectivity and
functoriality of the induced maps on Khovanov homology:

¢(Co D) =H(C)(p(D)) # £H(C)(@(D)) = ¢(CoD')
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and therefore, they are not isotopic rel boundary.
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Theorem (Sundberg-Swann)

The 2" slice disks bounding the prime knot K,, (below) are o-distinguished,
and therefore, they are not isotopic rel boundary.
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To show link cobordisms 3¢ 1: ) — L are p-distinguished, there are two steps:
(1) calculate ¢(X0,1)

(2) show ¢(Xo) # +¢p(X1)

Sometimes these steps cannot be completed:
(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them
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To show link cobordisms 3¢ 1: ) — L are p-distinguished, there are two steps:
(1) calculate ¢(X0,1)

(2) show ¢(Xo) # +¢p(X1)

Sometimes these steps cannot be completed:
(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them

(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)
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(1) calculate ¢(X0,1)
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Sometimes these steps cannot be completed:
(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them
(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)
— that’s fine, linear algebra is my friend
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A note on yp-classes

To show link cobordisms 3¢ 1: ) — L are p-distinguished, there are two steps:
(1) calculate ¢(X0,1)
(2) show ¢(X0) # £p(Z1)

Sometimes these steps cannot be completed:
(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them
(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)
— that’s fine, linear algebra is my friend

(2b) large links have high-complexity Khovanov homology
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A note on yp-classes

To show link cobordisms 3¢ 1: ) — L are p-distinguished, there are two steps:
(1) calculate ¢(X0,1)
(2) show ¢(X0) # £p(Z1)

Sometimes these steps cannot be completed:

(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them

(2a) to distinguish homology classes, we show their representative cycles do not

add/subtract to a boundary (i.e., are in the image of some map)

— that’s fine, linear algebra is my friend

(2b) large links have high-complexity Khovanov homology
— that’s fine, | can write a computer program to handle that...?
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A note on yp-classes

To show link cobordisms 3¢ 1: ) — L are p-distinguished, there are two steps:
(1) calculate ¢(X0,1)
(2) show ¢(X0) # £p(Z1)

Sometimes these steps cannot be completed:
(1) large movies produce complicated (-classes
— that's fine, it just takes weeks/months to calculate some of them
(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)
— that’s fine, linear algebra is my friend
(2b) large links have high-complexity Khovanov homology
— that’s fine, | can write a computer program to handle that...?

Example. The @-class of a genus 1 surface bounding Wh;‘(31) has approximately
2!2 smoothings and the matrix representing h~1'! has approximate dimensions

20, 000 x 30,000
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e a surface ¥ C B* with boundary L C S* induces a link cobordism ¥: L — @
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Can we find a less computationally heavy alternative to ¢-classes?

0 Z

Method:

e a surface ¥ C B* with boundary L C S* induces a link cobordism ¥: L — @

o it induces a map H(X): H(L) = Z
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Can we find a less computationally heavy alternative to ¢-classes?

1] H(E)(p)EZ
4
~ 1. "
L ;ae H(L)

Method:

e a surface ¥ C B* with boundary L C S* induces a link cobordism ¥: L — @

o it induces a map H(X): H(L) = Z

@ choose a class p € H(L), and note that H(X)(p) € Z is an up-to-sign
invariant of the isotopy class of X.
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Lemma

For a link cobordism ¥: L — () and a class p € H(L), the ¢p*-number
P (X):=HE)p) €2

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.
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Lemma

For a link cobordism ¥: L — () and a class p € H(L), the ¢p*-number
¢ (2) = H(E)(p) € Z

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do ¢*-numbers distinguish any surfaces with boundary?
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Defining ¢*-numbers

Lemma

For a link cobordism ¥: L — () and a class p € H(L), the ¢p*-number
¢ (2) = H(E)(p) € Z

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do ¢*-numbers distinguish any surfaces with boundary?

Can we find X1 C B* bounding a common L C S* and a class ¢ € H(L) such
that (,D*(Eo) ;é :I:go*(El)?
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Defining ¢*-numbers

Lemma
For a link cobordism ¥: L — () and a class p € H(L), the ¢p*-number

" (D) :=H(Z)(p) €Z

is an up-to-sign invariant of the boundary-preserving isotopy class of 3.

Do ¢*-numbers distinguish any surfaces with boundary?

Can we find £o,1 C B* bounding a common L C S® and a class ¢ € H(L) such
that p*(Zo) # L™ (X1)?

If so, we say YXo,1 are *-distinguished.
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.
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Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

-
A,

K =946
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

m’\
\./U
K =946

Proof idea: show ¢*(D;) =1 and ¢*(D;) =0
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Theorem (Hayden-Sundberg)

The pair of slice disks D¢ and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D¢ and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

BlE[El8lelsl

So ¢*(D¢) =1 and ¢*(D,) =0, as desired.
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

K = 151103488
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

Slice disks for K = 15n10348s (image by Kyle Hayden).
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

K= 17nh74
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Applications of ¢*-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D, and D, for the knot K (below) are ¢*-distinguished
by the given class ¢ € H(K), and therefore, are not isotopic rel boundary.

Slice disks for K = 17nh74 (image by Kyle Hayden).
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boundary, but not smoothly isotopic rel boundary.




Exotic slices

A pair of surfaces in B* are exotic if they are topologically isotopic rel
boundary, but not smoothly isotopic rel boundary.

The slice disks bounding 1Tnhz4 are topologically isotopic rel boundary. I
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Exotic slices

Definition

A pair of surfaces in B are exotic if they are topologically isotopic rel
boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)
The slice disks bounding 1Tnhz4 are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B*.
v
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Definition

A pair of surfaces in B* are exotic if they are topologically isotopic rel
boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)
The slice disks bounding 1Tnhz4 are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B*.
v

First proof that Khovanov homology detects exotic surfaces.
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Exotic slices

Definition

A pair of surfaces in B* are exotic if they are topologically isotopic rel
boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)
The slice disks bounding 1Tnhz4 are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B*.
v

First proof that Khovanov homology detects exotic surfaces.
First gauge-theory free proof of exotic surfaces.
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@ easy to extend calculations (e.g., by ribbon concordances)
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@ easy to compare @*-numbers (they are integers)
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p-classes:
@ hard to compute ¢-classes

@ hard to compare ¢-classes

@ easy to extend calculations (e.g., by ribbon concordances)

@™ -numbers:
@ easy to compute p*-numbers when ¢ is chosen wisely
@ easy to compare @*-numbers (they are integers)

@ hard to extend calculations
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o tweak the algebra (e.g., through different versions of Khovanov homology)
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Future work

@ explore relationship between p-classes and ¢*-numbers
o tweak the algebra (e.g., through different versions of Khovanov homology)
o tweak the topology (slice disks in different 4-manifolds)

o study different families of disks (rolling, spinning, equivariant stuff)



Motivation
0000000

Background Knotted surfaces p-classes @™ -classes
0000000000000 0000 0000000000 000000

Future work

Future
0e0000

explore relationship between ¢-classes and p*-numbers

tweak the algebra (e.g., through different versions of Khovanov homology)
tweak the topology (slice disks in different 4-manifolds)

study different families of disks (rolling, spinning, equivariant stuff)

study relationship with other invariants (e.g. s-invariant or knot Floer
homology)
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Future work

Future
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explore relationship between ¢-classes and p*-numbers

tweak the algebra (e.g., through different versions of Khovanov homology)
tweak the topology (slice disks in different 4-manifolds)

study different families of disks (rolling, spinning, equivariant stuff)

study relationship with other invariants (e.g. s-invariant or knot Floer
homology)

study slice obstruction from (-classes



Thank You!

Thank you!
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