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Low-dimensional topology

Seeing in 4 dimensions is hard...

Technique: move down a dimension, to see what’s happening.

A surface Σ ⊂ R4, can also be described by its level sets Li = Σ ∩ (R3 × {i}).
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Low-dimensional topology

Seeing in 4 dimensions is hard...

Technique: move down a dimension, to see what’s happening.

Let’s start somewhere familiar: a surface Σ ⊂ R3, can be described by its level
sets Li = Σ ∩ (R2 × {i}).

Let’s do the same thing for surfaces in R3+1

A surface Σ ⊂ R4, can also be described by its level sets Li = Σ ∩ (R3 × {i}).
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Motivation for a slice disk

Question:

When does a knot K in the 3-sphere S3 bound a disk in the 4-ball B4?

To answer this question, we can describe a disk Σ by its level sets:

S3 = R3 ∪ {∞}

B4 = S3 × [0, 1]/S3 × {0}

The level sets of Σ are then Li = Σ ∩ (S3 × {i}).

Answer: Always!
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Definition of a slice disk

Classic Question:

Given a knot K in the 3-sphere S3, when does K bound a
smooth disk D properly embedded in the 4-ball B4?

Definition

A knot K ⊂ S3 that bounds a smooth, properly embedded disk D ⊂ B4

is a slice knot and D is a slice disk.

Some knots are slice, and some are not! Let’s look at an example.
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Existence of a slice disk

Example:

The knot 946 is slice, with slice disk D` described by the following level
sets:

∅

Alternative descriptions:

(a)

(b)

(a) (b)
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Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question:

What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example:

There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic?

Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)?

No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No?

(No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Uniqueness of slice disks

The existence of slice disks bounding a given knot K ⊂ S3 is well-understood.

Follow-up Question: What about uniqueness? Under what type of equivalence?

Example: There is a second slice disk Dr for 946.

Are D` and Dr isotopic? Yes - by a rotation!

Are D` and Dr isotopic rel boundary (i.e. leaving 946 fixed)? No? (No)



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Methods for studying slice disks

There are multiple ways to study slice disks up to boundary-preserving isotopy:

fundamental group of the compliment

Alexander modules

gauge theory

knot Floer homology

Khovanov homology
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Link cobordisms

Definition. A link cobordism Σ: L0 → L1 is a smooth, compact, oriented,
properly embedded surface Σ ⊂ R3 × [0, 1] with boundary a pair (i ∈ {0, 1}) of
oriented links Li = Σ ∩ (R3 × {i}).

Examples: slices (∅ → K), closed surfaces (∅ → ∅), Seifert surfaces (∅ → K)

Definition. A link cobordism Σ: L0 → L1 can be represented as a movie: a finite
sequence of diagrams {Dti}ni=0, with each successive pair related by an isotopy,
Morse move, or Reidemeister move.
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Idea of Khovanov homology

Khovanov homology is a functor on the category of link cobordisms.

links are assigned chain complexes with associated homology groups

link cobordisms are assigned chain maps with induced homomorphisms
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.
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homology H(D), called the Khovanov homology.

Formal definition:

consider the cube of resolutions for D, which can be regarded as a collection
of objects and morphisms in the cobordism category (Cob3,t)

apply a topological quantum field theory F : (Cob3,t)→ (ModR,⊗)
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complex and take homology
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Practical definition:

smooth each crossing in D as a 0-smoothing or a 1-smoothing

color each resulting component purple or orange

generate C(D) over Z with all possible labeled smoothings

define a differential and take homology
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Khovanov homology of links

Theorem (Khovanov)

A diagram D of an oriented link L induces a chain complex C(D) with
homology H(D), called the Khovanov homology.

Properties:

Different diagrams have isomorphic Khovanov homology
(we write H(L) to mean: choose a diagram D for L and consider H(D))

We set C(∅) = Z and H(∅) = Z

There is a bigrading Ch,q(D)

There is a (co)differential d : Ch,q(D)→ Ch+1,q(D)

Let’s take a quick look at C(31)
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Khovanov homology of links

The Khovanov chain complex of the trefoil is C(31) ∼= Z30
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The Khovanov homology of the trefoil is H(31) ∼= Z4
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Khovanov homology of surfaces

Theorem (Khovanov)

A movie {Dti}ni=0 of a link cobordism Σ: L0 → L1 induces a chain map

C(Σ): C(D0)→ C(D1)

with induced homomorphism H(Σ) on homology.

What do these chain maps C(Dti)→ C(Dti+1) look like?
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This map is also bigraded:
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Theorem (Khovanov)

A movie {Dti}ni=0 of a link cobordism Σ: L0 → L1 induces a chain map

C(Σ): C(D0)→ C(D1)

with induced homomorphism H(Σ) on homology.

Properties:

This map is also bigraded:

C(Σ): Ch,q(D0)→ Ch,q+χ(Σ)(D1)

Generally, they are difficult to compute...

They are invariant under boundary-preserving isotopy

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up
to sign, under smooth boundary-preserving isotopy of Σ.
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The map on Khovanov homology induced by a link cobordism Σ is invariant, up
to sign, under smooth boundary-preserving isotopy of Σ.
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Invariance

Theorem (Jacobsson, Bar-Natan, Khovanov)

The map on Khovanov homology induced by a link cobordism Σ is invariant, up
to sign, under smooth boundary-preserving isotopy of Σ.

We use this result to study link cobordisms up to boundary-preserving isotopy:

find pairs of link cobordisms Σ,Σ′ : L0 → L1

calculate their induced maps H(Σ) and H(Σ′)

show the induced maps are distinct H(Σ) 6= ±H(Σ′)

conclude Σ,Σ′ are not isotopic rel boundary
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A brief remark on local knottedness

In general, it is (perhaps too) easy to build such link cobordisms:

Given Σ: L0 → L1, we create a new link cobordism Σ′

Choose your favorite knotted 2-sphere S and connect-sum with Σ

Then Σ and Σ′ := Σ#S are (generally) not isotopic rel boundary.

Theorem (Swann, Hayden-Sundberg)

The map on Khovanov homology induced by a link cobordism is invariant under
connected sums with knotted 2-spheres.

Takeaway: do not do this when finding Σ,Σ′
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Defining ϕ-numbers

Question:

Can the induced maps on Khovanov homology distinguish knotted
surfaces in the 4-ball, up to ambient isotopy?

Method:

A knotted surface Σ ⊂ B4 can be regarded as a link cobordism Σ: ∅ → ∅

It induces a map H(Σ): Z→ Z, determined by H(Σ)(1) ∈ Z
This integer is invariant, up to sign, under ambient isotopy of Σ
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Defining ϕ-numbers

Lemma

For a link cobordism Σ: ∅ → ∅, the ϕ-number of Σ

ϕ(Σ) := H(Σ)(1) ∈ Z

is an up-to-sign invariant of the ambient isotopy of Σ.

Do the ϕ-numbers distinguish any knotted surfaces?

Can we find Σ0,1 ⊂ B4 with ϕ(Σ0) 6= ±ϕ(Σ1)?

Theorem (Rasmussen, Tanaka)

The ϕ-numbers associated to connected Σ ⊂ B4 are determined by genus:

if g(Σ) = 1, then ϕ(Σ) = ± 2

if g(Σ) 6= 1, then ϕ(Σ) = 0
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Cases

Idea:

Follow the same procedure for surfaces with boundary.

A surface Σ ⊂ B4 with boundary L ⊂ S3 can be regarded as:

a. a link cobordism Σ: ∅ → L, or

b. a link cobordism Σ: L→ ∅

We consider these cases separately in the next two sections.
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Defining ϕ-classes

Can the induced maps on Khovanov homology distinguish surfaces with boundary
in the 4-ball?

Method:

A surface Σ ⊂ B4 with boundary L ⊂ S3 induces a link cobordism Σ: ∅ → L

It induces a map H(Σ): Z→ H(L), determined by H(Σ)(1) ∈ H(L)

This homology class is invariant, up to sign, under boundary-preserving
isotopy of Σ
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Defining ϕ-classes

Lemma

For a link cobordism Σ: ∅ → L, the ϕ-class of Σ

ϕ(Σ) := H(Σ)(1) ∈ H(L)

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ.

Do ϕ-classes distinguish any surfaces with boundary?

Can we find Σ0,1 ⊂ B4 bounding a common L ⊂ S3 with ϕ(Σ0) 6= ±ϕ(Σ1)?

If so, we say Σ0,1 are ϕ-distinguished.
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Applications of ϕ-classes

Theorem (Swann, Sundberg)

The slice disks D` and Dr for 946 are ϕ-distinguished, and therefore, are not
isotopic rel boundary.

What do ϕ(D`) and ϕ(Dr) look like?
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are not isotopic rel boundary.

These knots are so nice! Are there even nicer knots out there?
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Applications of ϕ-classes

Theorem (Sundberg-Swann)

The 2n slice disks bounding #n(946) are ϕ-distinguished, and therefore, are not
isotopic rel boundary.
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Applications of ϕ-classes

Theorem (Sundberg-Swann)

The 2n slice disks bounding #n(946) are ϕ-distinguished, and therefore, are not
isotopic rel boundary.

Slice disks are obtained by boundary-summing copies of D` and Dr.
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Applications of ϕ-classes

Theorem (Sundberg-Swann)

The 2n slice disks bounding the prime knot Kn (below) are ϕ-distinguished,
and therefore, they are not isotopic rel boundary.

Proof Idea:

Every knot is ribbon concordant to a prime knot [KL79]

Ribbon concordances induce injections on Khovanov homology [LZ19]

So, extend the 2n slice disks for K = #n(946) by a ribbon-concordance
C : K → Kn to a prime knot Kn

These slice disks are pairwise ϕ-distinguished using injectivity and
functoriality of the induced maps on Khovanov homology:

ϕ(C ◦D) = H(C)(ϕ(D)) 6= ±H(C)(ϕ(D′)) = ϕ(C ◦D′)
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A note on ϕ-classes

To show link cobordisms Σ0,1 : ∅ → L are ϕ-distinguished, there are two steps:

(1) calculate ϕ(Σ0,1)

(2) show ϕ(Σ0) 6= ±ϕ(Σ1)

Sometimes these steps cannot be completed:

(1) large movies produce complicated ϕ-classes

→ that’s fine, it just takes weeks/months to calculate some of them

(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)

→ that’s fine, linear algebra is my friend

(2b) large links have high-complexity Khovanov homology

→ that’s fine, I can write a computer program to handle that...?

Example. The ϕ-class of a genus 1 surface bounding Wh+
2 (31) has approximately

212 smoothings and the matrix representing h−1,1 has approximate dimensions
20, 000× 30, 000
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(2) show ϕ(Σ0) 6= ±ϕ(Σ1)

Sometimes these steps cannot be completed:

(1) large movies produce complicated ϕ-classes
→ that’s fine, it just takes weeks/months to calculate some of them

(2a) to distinguish homology classes, we show their representative cycles do not
add/subtract to a boundary (i.e., are in the image of some map)
→ that’s fine, linear algebra is my friend

(2b) large links have high-complexity Khovanov homology
→ that’s fine, I can write a computer program to handle that...?

Example. The ϕ-class of a genus 1 surface bounding Wh+
2 (31) has approximately

212 smoothings and the matrix representing h−1,1 has approximate dimensions
20, 000× 30, 000
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Defining ϕ∗-numbers

Can we find a less computationally heavy alternative to ϕ-classes?

Method:

a surface Σ ⊂ B4 with boundary L ⊂ S3 induces a link cobordism Σ: L→ ∅

it induces a map H(Σ): H(L)→ Z
choose a class ϕ ∈ H(L), and note that H(Σ)(ϕ) ∈ Z is an up-to-sign
invariant of the isotopy class of Σ.
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Method:

a surface Σ ⊂ B4 with boundary L ⊂ S3 induces a link cobordism Σ: L→ ∅
it induces a map H(Σ): H(L)→ Z
choose a class ϕ ∈ H(L), and note that H(Σ)(ϕ) ∈ Z is an up-to-sign
invariant of the isotopy class of Σ.



Motivation Background Knotted surfaces ϕ-classes ϕ∗-classes Future

Defining ϕ∗-numbers

Lemma

For a link cobordism Σ: L→ ∅ and a class ϕ ∈ H(L), the ϕ∗-number

ϕ∗(Σ) := H(Σ)(ϕ) ∈ Z

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ.

Do ϕ∗-numbers distinguish any surfaces with boundary?

Can we find Σ0,1 ⊂ B4 bounding a common L ⊂ S3 and a class ϕ ∈ H(L) such
that ϕ∗(Σ0) 6= ±ϕ∗(Σ1)?

If so, we say Σ0,1 are ϕ∗-distinguished.
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Do ϕ∗-numbers distinguish any surfaces with boundary?
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.
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The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

K = 946
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

K = 946

Proof idea: show ϕ∗(D`) = 1 and ϕ∗(Dr) = 0
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

1
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

1

So ϕ∗(D`) = 1 and ϕ∗(Dr) = 0, as desired.
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

K = 15n103488
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

Slice disks for K = 15n103488 (image by Kyle Hayden).
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

K = 17nh74
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Applications of ϕ∗-numbers

Theorem (Hayden-Sundberg)

The pair of slice disks D` and Dr for the knot K (below) are ϕ∗-distinguished
by the given class ϕ ∈ H(K), and therefore, are not isotopic rel boundary.

Slice disks for K = 17nh74 (image by Kyle Hayden).
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Exotic slices

Definition

A pair of surfaces in B4 are exotic if they are topologically isotopic rel
boundary, but not smoothly isotopic rel boundary.

Theorem (Hayden)

The slice disks bounding 17nh74 are topologically isotopic rel boundary.

Corollary (Hayden-Sundberg)

The induced maps on Khovanov homology detect exotic pairs of surfaces in B4.

First proof that Khovanov homology detects exotic surfaces.

First gauge-theory free proof of exotic surfaces.
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ϕ∗-numbers:
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hard to extend calculations
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Future work

explore relationship between ϕ-classes and ϕ∗-numbers

tweak the algebra (e.g., through different versions of Khovanov homology)

tweak the topology (slice disks in different 4-manifolds)

study different families of disks (rolling, spinning, equivariant stuff)

study relationship with other invariants (e.g. s-invariant or knot Floer
homology)

study slice obstruction from ϕ-classes
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Thank You!

Thank you!
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