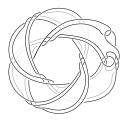
Khovanov homology and uniqueness of surfaces in the 4-ball

Isaac Sundberg

Max-Planck-Institut für Mathematik

DMV-Jahrestagung

16 September 2022



Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Table of Contents

Khovanov homology of surfaces

2 Applications to surfaces in the 4-ball

3 Applications to Seifert surfaces

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Table of Contents

Khovanov homology of surfaces

2 Applications to surfaces in the 4-ball

3 Applications to Seifert surfaces

Khovanov homology	of	surfaces
00000		

Applications to Seifert surfaces Future

What is Khovanov homology?

Khovanov homology of surfaces Applie	cations to surfaces in B^4	Applications to Seifert surfaces	Future
00000 000	0	000	000

What is Khovanov homology?

Khovanov homology is a functor on the category of link cobordisms:

Khovanov	homology	of	surfaces
000000)		

Applications to Seifert surfaces Futur 000 000

What is Khovanov homology?

Khovanov homology is a functor on the category of link cobordisms:

A link L in \mathbb{R}^3 is assigned a bigraded \mathbb{Z}_2 -module

Khovanov homology	of	surfaces
00000		

Applications to Seifert surfaces Future 000 000

What is Khovanov homology?

Khovanov homology is a functor on the category of link cobordisms:

A link L in \mathbb{R}^3 is assigned a bigraded \mathbb{Z}_2 -module

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

What is Khovanov homology?

Khovanov homology is a functor on the category of link cobordisms:

A link L in \mathbb{R}^3 is assigned a bigraded \mathbb{Z}_2 -module

A link cobordism $\Sigma \colon L_0 \to L_1$ in $\mathbb{R}^3 \times [0,1]$ is assigned a bigraded \mathbb{Z}_2 -linear map

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

What is Khovanov homology?

Khovanov homology is a functor on the category of link cobordisms:

A link L in \mathbb{R}^3 is assigned a bigraded \mathbb{Z}_2 -module

A link cobordism $\Sigma \colon L_0 \to L_1$ in $\mathbb{R}^3 \times [0,1]$ is assigned a bigraded \mathbb{Z}_2 -linear map

Khovanov homology of surfaces	Appli
00000	000

Applications to Seifert surfaces Future

Defining the induced maps

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Defining the induced maps

Khovanov homology of surfaces	
00000	

Applications to Seifert surfaces Future

Defining the induced maps

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $			

Khovanov homology of surfaces	
00000	

Applications to Seifert surfaces Future

Defining the induced maps

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	\$ \$ \$99 \$9		

Khovanov homology	of surfaces
000000	

Applications to Seifert surfaces Future

Defining the induced maps

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	> > % & % & %	C(G) C(G) C(G) C(G) C(G) C(G)	

Khovanov homology	of	surfaces
000000		

Applications to Seifert surfaces Future

Defining the induced maps

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	ଦ ଚ ଚଡ଼ି ବ ହ	$\begin{array}{c} c(\bigcirc)\\ c(\oslash)\\ c(\oslash)\\ c(\oslash)\\ c(\bigcirc)\\ c(\bigcirc)\\ c(\bigcirc)\\ c(\bigcirc)\end{array}$	

Khovanov homology of surfaces	
00000	

Applications to Seifert surfaces Future

Defining the induced maps

Link cobordism	Movie	Chain complex	Chain map
$\Sigma \left \begin{array}{c} L_1 \\ \Sigma \\ L_0 \end{array} \right $	ଦ ୧ ୧ ୧ ୫ ୫ ୫ ୫	$\begin{array}{c} c(\bigcirc)\\ c(\oslash)\\ c(\oslash)\\ c(\oslash)\\ c(\bigcirc)\\ c(\bigcirc)\\ c(\bigcirc)\\ c(\bigcirc)\end{array}$	$\begin{array}{c} \mathcal{C}(D_1) \\ \\ \mathcal{C}(\Sigma) \\ \\ \\ \mathcal{C}(D_0) \end{array}$

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Important facts about Khovanov homology

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Important facts about Khovanov homology

Theorem (Jac04, BN05, Kh06, CMW07)

The cobordism induced map $\mathsf{Kh}(\Sigma)$ is invariant under smooth, boundary-preserving isotopy of Σ .

Khovanov homology of surfaces	
000000	

Applications to Seifert surfaces Future 000 000

Important facts about Khovanov homology

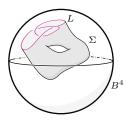
Theorem (Jac04, BN05, Kh06, CMW07)

The cobordism induced map $\mathsf{Kh}(\Sigma)$ is invariant under smooth, boundary-preserving isotopy of Σ .

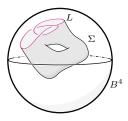
Theorem (MWW19)

Invariance of $\mathsf{Kh}(\Sigma)$ holds for link cobordisms in $S^3 \times [0,1]$.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

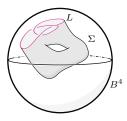


Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000



For smooth, properly embedded surfaces $\Sigma \subset B^4$ bounding a link $L \subset S^3$, we study the link cobordism $L \to \emptyset$ (can also study the mirror $\emptyset \to L$).

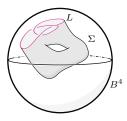
Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000



For smooth, properly embedded surfaces $\Sigma \subset B^4$ bounding a link $L \subset S^3$, we study the link cobordism $L \to \emptyset$ (can also study the mirror $\emptyset \to L$).

Examples:

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

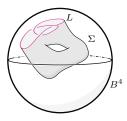


For smooth, properly embedded surfaces $\Sigma \subset B^4$ bounding a link $L \subset S^3$, we study the link cobordism $L \to \emptyset$ (can also study the mirror $\emptyset \to L$).

Examples:

• closed surfaces, $L = \emptyset$

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

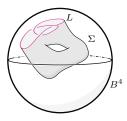


For smooth, properly embedded surfaces $\Sigma \subset B^4$ bounding a link $L \subset S^3$, we study the link cobordism $L \to \emptyset$ (can also study the mirror $\emptyset \to L$).

Examples:

- closed surfaces, $L = \emptyset$
- slice disks, $g(\Sigma) = 0$

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000



For smooth, properly embedded surfaces $\Sigma \subset B^4$ bounding a link $L \subset S^3$, we study the link cobordism $L \to \emptyset$ (can also study the mirror $\emptyset \to L$).

Examples:

- closed surfaces, $L = \emptyset$
- slice disks, $g(\Sigma) = 0$
- Seifert surfaces, $\Sigma \hookrightarrow S^3$

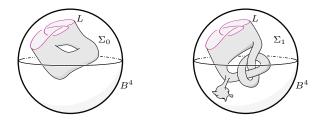
Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Futu
00000	0000	000	000

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Let $\Sigma_{0,1} \subset B^4$ be surfaces with common boundary $L \subset S^3$ and similar topology:

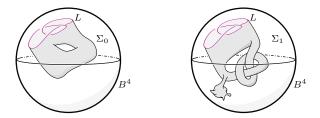
Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Let $\Sigma_{0,1} \subset B^4$ be surfaces with common boundary $L \subset S^3$ and similar topology:



Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

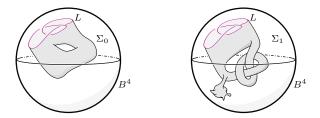
Let $\Sigma_{0,1} \subset B^4$ be surfaces with common boundary $L \subset S^3$ and similar topology:



These surfaces induce maps $\mathsf{Kh}(\Sigma_{0,1}) \colon \mathsf{Kh}(L) \to \mathbb{Z}_2$

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Let $\Sigma_{0,1} \subset B^4$ be surfaces with common boundary $L \subset S^3$ and similar topology:

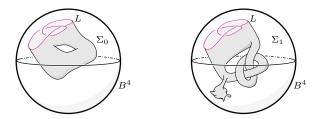


These surfaces induce maps $\mathsf{Kh}(\Sigma_{0,1}) \colon \mathsf{Kh}(L) \to \mathbb{Z}_2$

Goal: show $\mathsf{Kh}(\Sigma_0) \not\equiv \mathsf{Kh}(\Sigma_1)$ to conclude $\Sigma_0 \not\simeq \Sigma_1$ rel boundary.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
00000	0000	000	000

Let $\Sigma_{0,1} \subset B^4$ be surfaces with common boundary $L \subset S^3$ and similar topology:



These surfaces induce maps $\mathsf{Kh}(\Sigma_{0,1}) \colon \mathsf{Kh}(L) \to \mathbb{Z}_2$

Goal: show $\mathsf{Kh}(\Sigma_0) \not\equiv \mathsf{Kh}(\Sigma_1)$ to conclude $\Sigma_0 \not\simeq \Sigma_1$ rel boundary.

Strategy: find $\varphi \in \mathsf{Kh}(L)$ such that $\mathsf{Kh}(\Sigma_0)(\varphi) \neq \mathsf{Kh}(\Sigma_1)(\varphi)$

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	●000	000	000

Table of Contents

1 Khovanov homology of surfaces

2 Applications to surfaces in the 4-ball

3 Applications to Seifert surfaces

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future 000

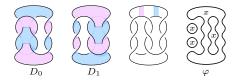
Proposition (S.-Swann 20, Hayden-S. 21)

The knot 9_{46} bounds a pair of slice disks $D_{0,1}$ distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future 000

Proposition (S.-Swann 20, Hayden-S. 21)

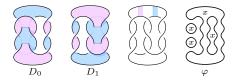
The knot 9_{46} bounds a pair of slice disks $D_{0,1}$ distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.

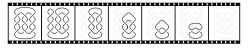


Khovanov homology of surfaces	Applications to surfaces in B^4 $0 \bullet 0 0$	Applications to Seifert surfaces	Future 000

Proposition (S.-Swann 20, Hayden-S. 21)

The knot 9_{46} bounds a pair of slice disks $D_{0,1}$ distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.



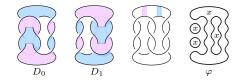


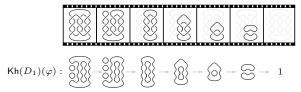
Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future 000

Some initial examples

Proposition (S.-Swann 20, Hayden-S. 21)

The knot 9_{46} bounds a pair of slice disks $D_{0,1}$ distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.





Khovanov homology of surfaces Application	to surfaces in B ⁴ Application:	s to Seifert surfaces Future
000000 0000	000	000

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

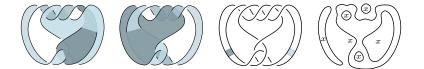
Proposition (Hayden-S. 21)

The knots $15n_{103488}$ and $17nh_{73}$ bound slice disks distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Proposition (Hayden-S. 21)

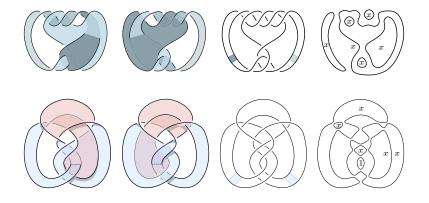
The knots $15n_{103488}$ and $17nh_{73}$ bound slice disks distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.



Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Proposition (Hayden-S. 21)

The knots $15n_{103488}$ and $17nh_{73}$ bound slice disks distinguished up to boundary-preserving isotopy by their maps on Khovanov homology.



Khovanov homology of surfaces	Applications to surfaces in B ⁴	Applications to Seifert surfaces	Future
000000	000●	000	000

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

**exotic*: isotopic through homeomorphisms, but not diffeomorphisms.

Khovanov homology of surfaces	Applications to surfaces in B ⁴	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

**exotic*: isotopic through homeomorphisms, but not diffeomorphisms.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

**exotic*: isotopic through homeomorphisms, but not diffeomorphisms.

Some notes:

• topological isotopy comes from [CP19]

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

* exotic: isotopic through homeomorphisms, but not diffeomorphisms.

- topological isotopy comes from [CP19]
- our calculations are simple, yet yield deep results

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

* exotic: isotopic through homeomorphisms, but not diffeomorphisms.

- topological isotopy comes from [CP19]
- our calculations are simple, yet yield deep results
- first gauge-theory-free proof of exotic surfaces

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

* exotic: isotopic through homeomorphisms, but not diffeomorphisms.

- topological isotopy comes from [CP19]
- our calculations are simple, yet yield deep results
- first gauge-theory-free proof of exotic surfaces
- exotic examples can be used to produce exotic 4-manifolds

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Theorem (Hayden-S. 21)

Khovanov homology can detect exotic* slice surfaces of all genera.

* exotic: isotopic through homeomorphisms, but not diffeomorphisms.

- topological isotopy comes from [CP19]
- our calculations are simple, yet yield deep results
- first gauge-theory-free proof of exotic surfaces
- exotic examples can be used to produce exotic 4-manifolds
- recent work extends to nonorientable surfaces [LS21]

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	●00	000

Table of Contents

1 Khovanov homology of surfaces

2 Applications to surfaces in the 4-ball

3 Applications to Seifert surfaces

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Khovanov homology	of	surfaces
000000		

Applications to surfaces in B^4 0000 Applications to Seifert surfaces

Future 000

Does Khovanov homology distinguish Seifert surfaces?

Note that all the surfaces we have considered are *immersed* in S^3 .

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

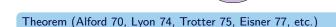
Note that all the surfaces we have considered are *immersed* in S^3 .

A Seifert surface for a link L is a surface $F \hookrightarrow S^3$ with boundary $\partial F = L$.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Note that all the surfaces we have considered are *immersed* in S^3 .

A Seifert surface for a link L is a surface $F \hookrightarrow S^3$ with boundary $\partial F = L$.

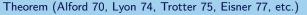


There are knots with (infinite) families of non-isotopic Seifert surfaces.

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Note that all the surfaces we have considered are *immersed* in S^3 .

A Seifert surface for a link L is a surface $F \hookrightarrow S^3$ with boundary $\partial F = L$.



There are knots with (infinite) families of non-isotopic Seifert surfaces.

Almost all become isotopic when pushed into B^4 .

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Note that all the surfaces we have considered are *immersed* in S^3 .

A Seifert surface for a link L is a surface $F \hookrightarrow S^3$ with boundary $\partial F = L$.

There are knots with (infinite) families of non-isotopic Seifert surfaces.

Almost all become isotopic when pushed into B^4 .

Question (Livingston)

Are all Seifert surfaces for a link L isotopic when pushed into B^4 ?

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Note that all the surfaces we have considered are *immersed* in S^3 .

A Seifert surface for a link L is a surface $F \hookrightarrow S^3$ with boundary $\partial F = L$.

There are knots with (infinite) families of non-isotopic Seifert surfaces.

Almost all become isotopic when pushed into B^4 .

Question (Livingston)

Are all Seifert surfaces for a link L isotopic when pushed into B^4 ?

Theorem (Livingston 82)

Seifert surfaces for the unlink are isotopic when pushed into B^4 .

Khovanov homology of surfaces

Applications to surfaces in B^4 0000 Applications to Seifert surfaces Future

Non-isotopic Seifert surfaces in ${\cal B}^4$

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

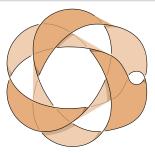
 Applications to Seifert surfaces
 Future

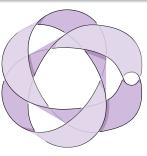
 OO●
 OOO

Non-isotopic Seifert surfaces in B^4

Theorem (Hayden-Miller-Kim-Park-S. 22)

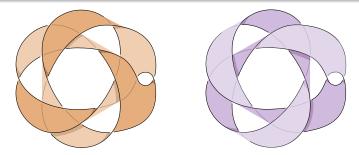
There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .





Theorem (Hayden-Miller-Kim-Park-S. 22)

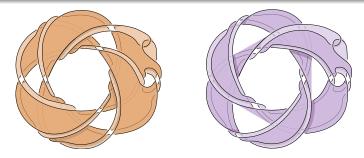
There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .



By Whitehead doubling, we produce exotic examples (see [CP20]).

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .



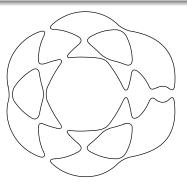
By Whitehead doubling, we produce exotic examples.

Applications to Seifert surfaces Future

Non-isotopic Seifert surfaces in B^4

Theorem (Hayden-Miller-Kim-Park-S. 22)

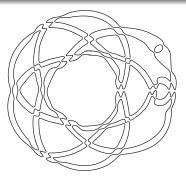
There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .



(All x labels)

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .



(All x labels)

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Proposition

If S is a strongly quasipositive Seifert surface for a knot J, then Wh(S) induces a nontrivial map from Kh(Wh(J)) to \mathbb{Z}_2 .

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Proposition

If S is a strongly quasipositive Seifert surface for a knot J, then Wh(S) induces a nontrivial map from Kh(Wh(J)) to \mathbb{Z}_2 .

Proposition (Hayden-Miller-Kim-Park-S. 22)

If J is a nontrivial, strongly quasipositive knot, then Wh(J) bounds at least two exotic, pushed-in Seifert surfaces in B^4 .

Theorem (Hayden-Miller-Kim-Park-S. 22)

There are knots bounding pairs of non-isotopic Seifert surfaces, which remain non-isotopic when pushed into B^4 .

Proposition

If S is a strongly quasipositive Seifert surface for a knot J, then Wh(S) induces a nontrivial map from Kh(Wh(J)) to \mathbb{Z}_2 .

Proposition (Hayden-Miller-Kim-Park-S. 22)

If J is a nontrivial, strongly quasipositive knot, then Wh(J) bounds at least two exotic, pushed-in Seifert surfaces in B^4 .

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Table of Contents

1 Khovanov homology of surfaces

2 Applications to surfaces in the 4-ball

3 Applications to Seifert surfaces

Khovanov homology of surfaces	Applications to surfaces in B^4	Applications to Seifert surfaces	Future
000000	0000	000	000

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future O●O

- study similar calculations with generalized Khovanov homologies:
 - reduced/odd Khovanov homology
 - deformed Khovanov homology (e.g., Lee and Bar-Natan)
 - Khovanov-Rozansky homology
 - annular Khovanov homology

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future O●O

- study similar calculations with generalized Khovanov homologies:
 - reduced/odd Khovanov homology
 - deformed Khovanov homology (e.g., Lee and Bar-Natan)
 - Khovanov-Rozansky homology
 - annular Khovanov homology
- study surfaces in 4-manifolds (c.f., [MWW19])

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future O●O

- study similar calculations with generalized Khovanov homologies:
 - reduced/odd Khovanov homology
 - deformed Khovanov homology (e.g., Lee and Bar-Natan)
 - Khovanov-Rozansky homology
 - annular Khovanov homology
- study surfaces in 4-manifolds (c.f., [MWW19])
- study relationship with other invariants (e.g., s-invariant, knot Floer homology invariant t_{Σ})

Khovanov homology of surfaces	Applications to surfaces in B^4 0000	Applications to Seifert surfaces	Future O●O

- study similar calculations with generalized Khovanov homologies:
 - reduced/odd Khovanov homology
 - deformed Khovanov homology (e.g., Lee and Bar-Natan)
 - Khovanov-Rozansky homology
 - annular Khovanov homology
- study surfaces in 4-manifolds (c.f., [MWW19])
- study relationship with other invariants (e.g., s-invariant, knot Floer homology invariant t_{Σ})
- study the induced maps from concordances (link cobordisms $\Sigma \cong S^1 \times [0,1]$)

Khovanov homology of surfaces	Applications to surfaces in B ⁴ 0000	Applications to Seifert surfaces	Future 00●

Thank You!

Thank you!