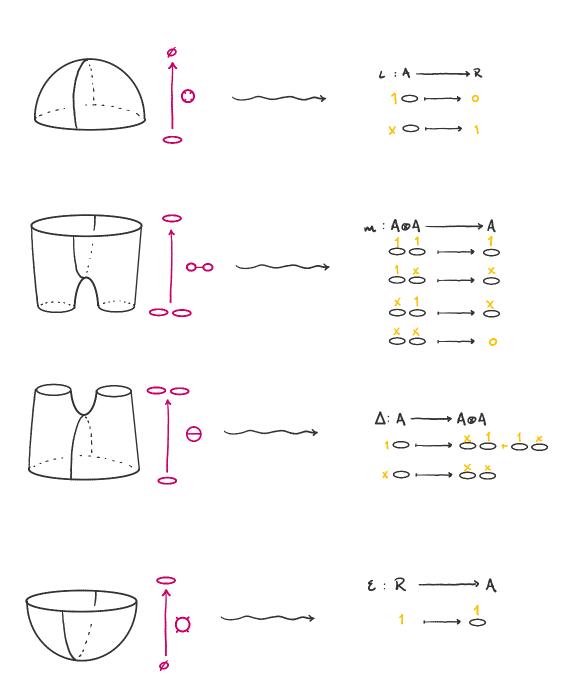
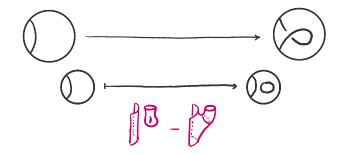
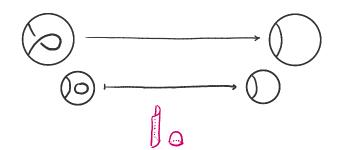
Here are the maps from last time, used to define our TAFT. Note the new shorthand for these cobordisms.



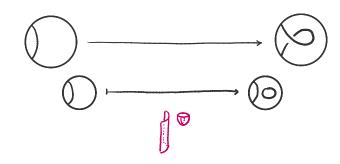
Here are the Reidemeister I and II induced maps. We relate smoothings by linear combinations of cobordisms. Given a labeling, we apply the corresponding Morse induced map. Smoothings not shown are mapped trivially (to the "zero woordism").

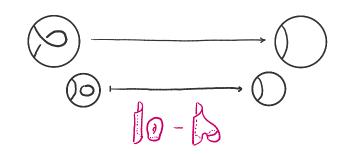
POSITIVE RI



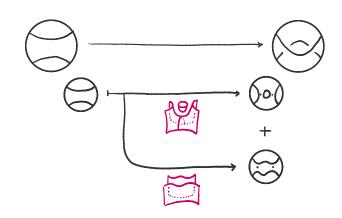


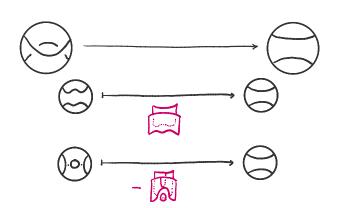
NEGATIVE RI





RIL



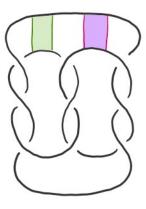


Exercise Find $\phi \in Kh(3, \# m(3,1))$ so that the slice disk D illustrated below satisfies $Kh(D)(\phi) = 1$.

- (a) Write out a movie for this slice disk
- (b) Find a candidate cycle P
 - i. What bigrading is Kh(D) supported in?
 - ii. How many O and I smoothings does & hare?
 - iii. How many I and x labels can & have?
 - iv. Make some guesses at \$
 - v. Make sure & is a cycle (d=0)
- (c) Show Kh(D)(4) = ±1.
- (d) Bonus Find a second class with this property.

Exercise Here are two slice disks D_e and D_r for 9_{46} , given as band moves. Show that they induce distinct maps $Kh(D_{4,r}): Kh(9_{46}) \to Kh(\emptyset)$

- (a) Follow above steps to find DEKh (946)
- (b) Show Kh(Dx)(4)=0 and Kh(Dr)(4)=1
- (c) What can we conclude about De and Dr ?



Exercise Show the surfaces below are distinct by distinguishing their induced maps on the given homology class.

