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Abstract

We use the functoriality of Khovanov homology to examine the smooth, boundary-
preserving isotopy of surfaces embedded in the 4-ball. We exemplify an infinite family of
prime knots that bound an arbitrarily-large number of smoothly-distinct slice disks by
distinguishing the maps they induce on Khovanov homology. Similar techniques produce
an infinite family of knots that each bound a pair of exotic surfaces of arbitrary genus.
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Chapter 1

Introduction

This dissertation examines the maps on Khovanov homology associated to smooth, ori-

ented, compact, properly embedded surfaces in the 4-ball. In particular, we use these

maps to answer questions of existence and uniqueness for slice disks.

1.1. Motivation

A knot K in the 3-sphere S3 is slice if there exists a smoothly-embedded disk D in the

4-ball B4 for which ∂D = K. Such a disk is called a slice disk for K. It is not always

easy to tell which knots are slice by looking at them; after all, they are 4-dimensional!

A common technique for visualizing slice disks is to bring them down a dimension by

looking at the 3-dimensional pieces from which they are made: their level sets with respect

to the 4-ball radius. By viewing the 4-ball as a quotient space B4 = S3× [0, 1]/S3×{0},

the slice disk D is described by the sets Li = D ∩ (S3 × {i}) with respect to the 4-ball

radius i ∈ [0, 1]. These level sets will be links, except at finitely many double points and

isolated singularities. For example, we have illustrated a slice disk D` for the knot 946

in Figure 1.1, where we see that a single handle attachment splits the knot into a two

component unlink, which are then capped off to form a disk.
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(a)

(b)

(c)

(d)

Figure 1.1: (a) a diagram for the knot 946 decorated with a band describing a 1-handle
attachment; (b) a schematic for the genus of the surface produced by the 1-handle;
(c) the resulting slice disks D` pushed into the 3-sphere; (d) a movie describing the level
sets of D` in the 4-ball.

Understanding which knots are slice has played an important role in low-dimensional

topology, being crucial to the formation of the knot concordance group as well as to the

success and failure of the Whitney trick. As a result, the sliceness of knots has been

well studied and is currently known for knots with up to 13 crossings, with the final

11 crossing knot only recently being determined [Pic20]. Focusing on the slice disk, as

opposed to the knot itself, this indicates that the existence of a slice disk for a given

knot is well understood, and indeed, there is a bounty of examples of slice disks to

consider. Surprisingly, there are many examples of knots having multiple slice disks! For

example, the knot in Figure 1.1 has a second slice disk Dr, obtained by rotating the level

sets, or equivalently, by attaching a 1-handle on the right side of the diagram. Because

such examples exist, it is a natural to study the uniqueness of slice disks. Are the slice
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disks D` and Dr equivalent? As has already been hinted, they are related by an isotopy

that rotates the disk by 180◦. Surprisingly, if we restrict to boundary-preserving isotopy,

where the boundary knot is required to stay fixed as a set, the answer is no! The slice

disks D` and Dr are not isotopic rel boundary.

Low-dimensional topologists have developed techniques for obstructing the boundary-

preserving isotopy of slice disks (and more generally, surfaces in 4-manifolds) by applying

tools from the fundamental group of the complement of the disks [CP21, MP19], gauge

theory [Akb91, Hay21], and Heegaard Floer homology [JM16, JZ20]. In this dissertation,

we discuss the application of Khovanov homology toward these questions. This innovative

approach appears promising, being the only (known) technique that can smoothly distin-

guish topologically-equivalent surfaces without using gauge theory. Our results add to the

growing list of applications of Khovanov homology toward understanding 4-dimensional

information. For example, the Lee deformation of Khovanov homology [Lee02] was used

to define the s-invariant [Ras05], which has been used in the groundbreaking proof that

the Conway knot is not slice [Pic20], as well as in reproofs of Milnor’s conjecture [Ras05]

and the existence of exotic smooth structures on R4 [Ras10], both of which previously

required gauge theory. Moreover, generalizing, deforming, and extending Khovanov ho-

mology is an active field of research (c.f., [Kho06b, LS21, MN20, MWW21]). These

generalizations may enhance our technique for distinguishing slice disks and may pro-

vide invariants for a broader range of surfaces within 4-manifolds.

1.2. Methods

The Khovanov homology functor H developed in [Kho00] acts on the category of link

cobordisms in R3× [0, 1]. It associates to an oriented link L a diagramatically-defined ho-

mology group H(L), and it associates to a link cobordism Σ: L0 → L1 a diagramatically-

defined homomorphism H(Σ) : H(L0) → H(L1). The induced map is invariant, up to
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sign, under smooth boundary-preserving isotopy of the link cobordism [Jac04, BN05,

Kho06a]. Therefore, link cobordisms can be distinguished by showing they induce dis-

tinct maps, up to sign. We adapt this invariant to surfaces in S3 × [0, 1] and B4, and in

particular, to slice disks.

A smooth, oriented, properly embedded surface Σ in the 4-ball can be regarded as

a link cobordism from the empty link ∅ to the link L = ∂Σ in the boundary 3-sphere.

The case where L = ∅ was first considered in [Kho00], where it was conjectured that

the associated map on Khovanov homology could distinguish knotted tori. At the time

(2000), the invariance under boundary-preserving isotopy had not been proven; once it

was established (2004), the conjecture gained some interest. Initial calculations of the

map on Khovanov homology induced by certain families of knotted tori were produced

[CSS06]. Inevitably, this lead to the conclusion that these maps are trivially determined

by genus [Ras05, Tan06]. The relative case L 6= ∅ was later studied by Swann in [Swa10].

Although errors were found in Swann’s work [Bat12], many of the results were confirmed,

re-proven, and extended in [SS21]. In particular, it was shown that the relative case is

nontrivial, in the sense that the associated induced maps can be used to distinguish

surfaces with boundary. Additionally, the maps induced by link cobordisms L→ ∅ were

studied in [HS21] with similar results proven for exotic slice disks.

1.3. Results

In this dissertation, we prove the results from [SS21] and [HS21] and highlight numerous

additional applications and calculations the author has discovered in producing these

works. The main results are highlighted here. There are three main results regarding

the maps on Khovanov homology: they can distinguish slice disks; they can smoothly

distinguish topologically isotopic surfaces; they are invariant under local knotting.
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Unique slice disks The aforementioned works [SS21, Swa10] examined the maps on

Khovanov homology induced by link cobordisms Σ : ∅ → L. In this dissertation, we

continue this analysis and prove the following two theorems.

Theorem 1.3.1. The knots 61 and 946 each bound a pair of slice disks that induce

distinct maps on Khovanov homology, and hence, are distinct up to smooth, boundary-

preserving isotopy.

Theorem 1.3.2. For each integer m ≥ 0, there is a prime knot Km bounding 2m slice

disks that induce distinct maps on Khovanov homology, and hence, are pairwise distinct

up to smooth, boundary-preserving isotopy.

The essence of these theorems is noting that the induced map H(Σ) : Z → H(L) is

determined by where it maps the unique generator of H(∅) = Z; we denote this element

ϕ(Σ) := H(Σ)(1) ∈ H(L)

This element has previously been called the relative Khovanov-Jacobsson class of Σ

[Swa10, SS21], however, in this dissertation we will err on the side of brevity and call it

the ϕ-class of Σ. Given the aforementioned invariance of H(Σ), the ϕ-class is an up-to-

sign invariant of the smooth, boundary-preserving isotopy class of Σ. We prove Theorem

1.3.1 by distinguishing the ϕ-classes for the relevant slice disks.

The ϕ-classes have the benefit that they work well with the theory of Khovanov

homology, and Theorem 1.3.2 is proven by exploiting the general behavior of these in-

variants under ribbon-concordances (i.e., genus-0 cobordisms with no local maxima). The

idea is to extend a given pair of slice disks by attaching a ribbon-concordance to their

boundary. Ribbon-concordances induce injections on Khovanov homology [LZ19], so if

the slice disks have distinct ϕ-classes, then the extension of the slice disks will also have

distinct ϕ-classes. We combine this with the fact that every knot is ribbon-concordant
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to a prime knot [KL79] to extend the 2m distinct slices of #m(946) to a family of distinct

slice disks for a prime knot Km.

There are two major obstacles that ϕ-classes face: they are cumbersome to calcu-

late and, even when computed, they are difficult to distinguish. In certain cases, these

obstacles can be overcome. In particular, we give a SageMath program in Chapter 6

that distinguishes Khovanov homology classes associated to knot diagrams with up to

12 crossings.

Exotic slice disks The lowest dimension where the smooth and topological properties

of manifolds diverge is in dimension four, and the distinction between these categories

is a fundamental topic in low-dimensional topology. We say a pair of surfaces in a 4-

manifold are exotic if they are topologically isotopic relative their boundary but not

smoothly. Recall that the maps on Khovanov homology are invariant under smooth,

boundary-preserving isotopy, and therefore, they are a natural candidate for detecting

exotic surfaces. The surfaces in Theorems 1.3.1 and 1.3.2 are not even homotopic rel

boundary, so a new family of slice disks must be considered. Later work used the maps

on Khovanov homology to detect an infinite family of knots that each bound a pair of

exotic surfaces with any chosen genus [HS21]. This dissertation reproves the following

case from that work.

Theorem 1.3.3. For each pair of non-negative integers m and n, there is a knot Jm,n

bounding a pair of exotic genus n surfaces that induce distinct maps on Khovanov ho-

mology, and hence, are distinct up to boundary-preserving isotopy.

To prove this, we improve upon the techniques used in Theorems 1.3.1 and 1.3.2. We

implement the same base strategy: a smooth, oriented, properly embedded surface in the

4-ball with boundary link L = ∂Σ can also be regarded as a link cobordism Σ∗ : L→ ∅
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by reflecting the link cobordism from above through the interval factor of R3 × [0, 1].

This cobordism is called the dual cobordism, and it induces a dual map H(L)→ Z which

is invariant, up to sign, under smooth, boundary-preserving isotopy of Σ. Thus, for each

class ϕ ∈ H(L),

ϕ∗(Σ) := H(Σ∗)(ϕ) ∈ H(∅) = Z

is an up-to-sign invariant of the boundary-preserving isotopy class of Σ, called the

ϕ∗-class of Σ. Unlike the previous approach, we may control the complexity of cal-

culating ϕ∗(Σ) by choosing ϕ wisely; moreover, we can easily distinguish ϕ∗-classes (up

to sign), because they are integers. In Theorem 1.3.3, we show that a pair of topologically

equivalent genus n surfaces Σ0,1 bounding a given knot Jm,n are smoothly distinct by

giving a class ϕ ∈ H(Jm,n) such that ϕ∗(Σ0) = 0 and ϕ∗(Σ1) = 1. Note that for n = 0,

this theorem gives an infinite family of pairs of exotic slice disks for the knot Jm,0.

Local knotting A notable strength of the cobordism induced maps is their invari-

ance under local knotting: for a surface Σ in the 4-ball and a knotted 2-sphere S, we

say Σ#S is locally knotted. Locally knotting a surface generally changes its smooth,

boundary-preserving isotopy class, and because there are many knotted 2-spheres, it

is more rewarding to omit this operation when studying boundary-preserving isotopy

classes of surfaces. Fortunately, we prove that our favorite invariant is not sensitive to

this operation.

Theorem 1.3.4. The induced maps on Khovanov homology are invariant under local

knotting: any link cobordism Σ: L0 → L1 and knotted 2-sphere S have

H(Σ) = ±H(Σ#S)

In particular, this implies that Theorems 1.3.2 and 1.3.3 distinguish locally unknotted

families of surfaces in the 4-ball.
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1.4. Future work

The successful application of the cobordism induced maps on Khovanov homology in-

dicate that continued study will be promising. The work of this dissertation can be

extended and applied to other related questions in low-dimensional topology. We list

some of these ideas here.

Uniqueness of spanning surfaces. A spanning surface of a knot K is an oriented

surface in the 3-sphere bounding K. Pairs of unique spanning surfaces for a fixed K have

been found [Alf70, Lyo74, Tro75], and it is natural to ask if they remain unique when

pushed into 4-ball. In [Liv82], Livingston showed that the surfaces in [Tro75] become

isotopic when pushed into B4 and posed the unlikely conjectured that all non-isotopic

spanning surfaces become isotopic in the 4-ball. This conjecture remains open. Potential

counterexamples exist, and the maps they induce on Khovanov homology may be able

to distinguish them.

Detecting sliceness. If Σ is a genus 1 surface in the 4-ball bounding a slice knot,

then the ϕ-class ϕ(Σ) is nontrivial (c.f., Theorem 5.1 [SS21], or Theorem 5.4.1). In other

words, the sliceness of a knot K can be obstructed by finding a genus 1 link cobordism

Σ : ∅ → K having trivial ϕ(Σ). With this approach, the sliceness of a family of odd 3-

stranded pretzel knots was determined [SS21, Swa10]. Initial observations indicate that

this technique can be extended to a broader family of odd 3-stranded pretzel knots.

Extending this to all odd 3-stranded pretzel knots would reëstablish the slice-ribbon

conjecture for these knots [GJ11], previously requiring gauge theory. We provide more

insight for this application in Section 5.4.

Relation to knot Floer homology. A similar invariant of cobordism induced maps

has been defined using knot Floer homology in [JM16] and was used to distinguish a
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family of slice disks in [JZ20]. Given the general symmetry of results between Khovanov

homology and knot Floer homology, it is likely that these slice disks can also be dis-

tinguished by their maps on Khovanov homology. Conversely, the maps on knot Floer

homology induced by the exotic surfaces in Theorem 1.3.3 can be examined. It is also

unknown if these invariants are related, perhaps by a spectral sequence.

Other versions of Khovanov homology. The definition of Khovanov homology we

use is from [Kho00], however, many generalizations and deformations exist [BN05, Lee02,

Kho06b]. The above techniques can be explored in these generalized settings with the

hope of finding richer invariants and deeper results (c.f., [LS21]). These versions of Kho-

vanov homology are inherent to links in S3 and surfaces in S3× [0, 1], and generalizations

to other 3- and 4-manifolds also exist (c.f., [MN20, MWW21]). Again, these invariants

can likely be broadening to invariants for surfaces in other 4-manifolds.

1.5. Outline

This dissertation is organized into chapters, containing sections. The next chapter (Chap-

ter 2) covers the necessary background on surfaces in S3×[0, 1] and their associated maps

on Khovanov homology. Chapter 3 extends these maps to surfaces in the 4-ball. Chapter

4 characterizes the induced maps associated to closed surfaces. The main results of this

dissertation are found in Chapters 5-7, where we examine the induced maps associated

to surfaces with boundary. Chapter 5 considers link cobordisms ∅ → L, with which we

define ϕ-classes. Chapter 6 gives a SageMath program that determines nontriviality of

Khovanov homology classes, which we use in certain applications of ϕ-classes. We con-

clude with Chapter 7, which considers link cobordisms L → ∅ and their induced maps,

with which we define ϕ∗-classes. The dissertation contains three appendices, covering

background on categories (A), topological quantum field theories (B), as well as some

supplementary code (C) for Chapter 6.

9



1.6. Conventions

Throughout the dissertation, we will make use of certain shorthands and assumptions;

these are listed here. Unless stated otherwise, we assume: all surfaces are oriented, com-

pact, generic, and smooth; every isotopy is a smooth and boundary-preserving. The

notation for pairs of objects will be confined to a common index (a pair of links L0,1)

and in certain cases, to a superscrit (a pair of links L,L′). Compositions of cobordisms

Σ1 ◦ Σ0 are read right to left, to be consistent with the functions that they induce. Il-

lustrations of cobordisms should be seen as ascending, that is, as a cobordism from the

link illustrated on the bottom to the link illustrated on the top. Occasionally, we use

diagrams D interchangeably with the links L they represent, as in C(L) and H(L), which

are diagrammatically-defined (a diagram is always clear from context).
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Chapter 2

Background

This chapter discusses the necessary background for computing and utilizing the maps

on Khovanov homology induced by link cobordisms. We begin by reviewing link cobor-

disms in Section 2.1. We summarize the link homology theory defined in [Kho00], known

as Khovanov homology. This is done in two phases: the Khovanov homology groups as-

sociated to oriented link diagrams are defined in Section 2.2 and the maps on Khovanov

homology induced by link cobordisms are defined in Section 2.3.

2.1. Link cobordisms

In this section we will discuss link cobordisms, which are (roughly) nice surfaces bounding

pairs of links. Link cobordisms represent a large variety of surfaces of interest to low-

dimensional topologists. Their breadth gives them importance, and as such, we should

be careful to specify the lens through with we study them. In particular, we will discuss:

their definition (2.1.1); our notion of equivalence of link cobordisms, through boundary-

preserving isotopy (2.1.2); the methods with which we study link cobordisms, as surface

diagrams and their associated movies (2.1.3); and how the methods change under this

type of equivalence, through movie moves (2.1.4). The majority of this section reflects

the theoretical usage of link cobordisms, which may lead many to be overly wary of
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their use in practice. In reality, we rarely think about these notions that float in the

background. Link cobordisms are flexible and highly useful, which we discuss at the end

of the chapter (2.1.5).

2.1.1 Definition and examples

Here we give the definition of a link cobordism which, as their name suggests, are cobor-

disms between links. Some examples are listed to provide context and to help visualize

the objects we will work with. A useful image to reference is given in Figure 2.1.

Definition 2.1.1. Let Fg be a compact, oriented, genus-g surface with boundary. A link

cobordism is the image Σ of a smooth, proper embedding h : Fg ↪→ R3 × [0, 1]. The

boundary of Σ is a pair of oriented links L0,1 ⊂ R3×{0, 1}. We often use the shorthand

Σ: L0 → L1 to describe the relevant information of a link cobordism.

Many familiar surfaces can be tailored to the above definition: Seifert surfaces, slice

disks, and link concordances are all examples of link cobordisms. These surfaces do not, a

priori, live in R3× [0, 1], so some work is done to adapt them to this setting. For surfaces

in S3 and B4, we generally remove points and arcs from the ambient space, with the goal

of producing a surface properly embedded in R3 × [0, 1]. As these surfaces are generally

studied up to some form of isotopy, we must be careful that the process of deleting points

and arcs will guarantee consistency between the equivalence of link cobordisms and the

equivalence of these other topological objects. See Chapter 3 for certain surfaces in B4.

2.1.2 Isotopy

Link cobordisms are studied up to multiple types of equivalence (e.g., boundary-preserving

isotopy, ambient isotopy, or morphisms of R3 × [0, 1] carrying one surface to the other)

and within two main categories (topological or smooth). In this dissertation, we consider

link cobordisms up to smooth, boundary-preserving isotopy, which we define below.
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Figure 2.1: (left) a schematic for a link cobordism from the unknot to the trefoil, where
the surface records the genus of the cobordism; (right) a sequence of the level sets from
the link cobordism; each plane represents a copy of S3 containing the portion of the link
cobordism at that 4-ball radius.

We begin with a general definition for embeddings of manifolds. Let M and N be

manifolds. A pair of embeddings h0,1 : M ↪→ N are isotopic if they are related by an

isotopy : a smooth map H : M×[0, 1]→ N such that each ht = H|M×{t} is an embedding.

In certain cases, such an isotopy can be extended to a map on the entire space N . We say

the embeddings h0,1 are ambiently isotopic if there is an ambient isotopy between them:

a smooth map H : N × [0, 1] → N , for which each Ht = H|N×{t} is a diffeomorphism,

H0 ≡ id and H1 ◦ h0 ≡ h1. An isotopy of embeddings of a compact manifold M can

always be extended to an ambient isotopy [EK71, Corollary 1.4]. In the case at hand,

we are using M = Fg, so for simplicity, we adopt the definition of an ambient isotopy as

our base notion of isotopy, as in the following definition. For notational convenience, let

X = R3 × [0, 1].

Definition 2.1.2. A pair of link cobordisms Σ0,1 are isotopic, denoted Σ0 ∼ Σ1, if their

embeddings h0,1 are ambiently isotopic: there is a smooth map H : X× [0, 1]→ X whose

restrictions Ht = H|X×{t} are diffeomorphisms satisfying H0 ≡ idX and H1 ◦ h0 ≡ h1.
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Definition 2.1.3. A pair of isotopic link cobordisms Σ0,1 are isotopic rel boundary,

denoted Σ0 ∼ Σ1 rel ∂, if the isotopy H between them fixes ∂X × [0, 1] setwise. In this

case, we call H a boundary-preserving isotopy.

As the main focus of this dissertation is boundary-preserving isotopy, we often will

err on the side of brevity and omit the phrase boundary-preserving. We will explicitly

state when we are considering an isotopy that does not preserve the boundary.

2.1.3 Surface diagrams and movies

Just as we study links in R3 by the diagrams they project onto a plane, we will study

link cobordisms by the surface diagrams they project onto a hyperplane of R3 × [0, 1].

We follow the treatment of surface diagrams and movies from [Jac04].

A link cobordism Σ : L0 → L1 is generic if, with respect to the interval factor of

R3 × [0, 1], it restricts to a Morse function with distinct critical values. When generic,

the level sets Lt = Σ∩(R3×{t}) are all links, except at finitely many critical levels, where

the level set contains either a transverse double point or an isolated point. A transverse

double point corresponds to a Morse saddle, or equivalently, a 1-handle attachment; an

isolated point corresponds to a Morse birth or death, or equivalently, a 0- or 2-handle

attachment. We assume all link cobordisms are generic.

Definition 2.1.4. A surface diagram of a generic link cobordism Σ: L0 → L1, denoted

S : D0 → D1, is the image S ⊂ R2 × [0, 1] of Σ under a generic projection (p × id) :

R3 × [0, 1]→ R2 × [0, 1].

By a generic projection, we mean that, “the only singular points in the interior of

the surface diagram are double points, Whitney umbrella points and triple points. At a

double point, the diagram looks like the transversal intersection of two planes. Whitney
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umbrellas and triple points occur as the (isolated) boundary points of the double point set

in the interior of R2×[0, 1]," [Jac04]. When Σ is generic, each level setDt = S∩(R2×{t})

is a link diagram for the link Lt except at finitely many critical points (corresponding to

Morse moves) as well as finitely many singular points arising from the projection, i.e.,

the double and triple points (corresponding to Reidemeister moves).

Surface diagrams are used to study link cobordisms in a very similar way that dia-

grams are used to study links. Just as there is a set of Reidemeister moves that relate

diagrams for isotopic links, there is a set of Roseman moves that relate surface diagrams

for any pair of isotopic link cobordisms [Ros98]. We illustrate a few Roseman moves here.

Figure 2.2: A pair of Roseman moves

Surface diagrams are not easy to visualize, having many singularities, so we often

pass to a secondary tool for visualizing and studying link cobordisms, called movies.

Definition 2.1.5. A movie of a surface diagram S : D0 → D1, representing a generic

link cobordism Σ : L0 → L1, is a finite sequence of diagrams, with successive pairs of

diagrams related by a planar isotopy, Morse move, or Reidemeister move. Individual

diagrams in the sequence are often called frames.

15



To obtain the frames of a movie, we use the following process. Let t1, . . . , tm−1 be

the critical points and singular points of S, as described above, ordered with respect to

the interval factor of R3 × [0, 1]. Then for each i ∈ {1, . . . ,m − 1}, the point ti has a

sufficiently small neighborhood [ti − ε(i), ti + ε(i)] in which the diagrams Dti−ε(i) and

Dti+ε(i) are related by a Morse move or Reidemeister move. Additionally, each interval

[ti+ε(i), ti+1−ε(i+1)] describes an isotopy between Dti+ε(i) and Dti+1−ε(i+1). Let t0 = 0

and tm = 1. Then the desired movie is the sequence of diagrams corresponding to the

points {t0, ti ± ε(i), tm}, which may be reindexed as {Dti}ni=0.

2.1.4 Movie moves

Movies associated to isotopic link cobordisms are related by a sequence of movie moves,

which locally adjust the frames of a movie. A list of all necessary movie moves was

given in [CS93, CRS97]. This list includes moves corresponding to the Roseman moves,

mentioned above, as well as new moves which arise from the addition of a time function

on the surface diagram. We list a few movie moves here.

Figure 2.3: Movie moves corresponding to the Roseman moves in Figure 2.2.

2.1.5 Approaching link cobordisms practically

Link cobordisms and their surface diagrams are particularly useful from a theoretical

perspective. We will later see that the important properties regarding maps on Khovanov
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homology are proven by understanding the subtle interplay between link cobordisms,

surface diagrams, and movies. On the other hand, when we work with a link cobordism

directly, this theory is not as relevant. In fact, we often define a link cobordism by working

backwards through the process we have described; that is, we simply define a movie by

constructing a sequence of diagrams with the desired properties of a movie. This induces

a link cobordism: adjacent diagrams in the movie can be connected in R2 × [ti, ti+1] by

the trace of the move through which they are related; stacking these (immersed) surfaces

gives a surface in R2 × [0, 1]; the result can be lifted into R3 × [0, 1] to remove any

singularities, yielding a link cobordism.

2.2. Khovanov homology of links

Now that we have a strong foundational understanding of link cobordisms, we are ready

to define Khovanov homology. We give the classical definition of Khovanov homology,

first defined in [Kho00]. In particular, we will define the cube of resolutions for an oriented

knot diagram, define and apply a topological quantum field theory G, and finally, obtain

a chain complex whose homology is the Khovanov homology. The reader may benefit

from reading Appendices A and B, which review some relevant categories and discuss

topological quantum field theories (tqft’s).

2.2.1 Cube of resolutions

The cube of resolutions is an organized collection of objects and morphisms in the cobor-

dism category Cob3 (defined in Appendix A). The organization into a cube is not neces-

sary, but it does anticipate the chain complex structure we will obtain. This is achieved

in the following sections, where we show that a suitable tqft takes the cube of resolutions

to a collection of modules and linear morphisms (objects and morphisms in ModR) that

form a chain complex.

17



To begin, let L be an oriented link inR3, represented by a diagramD with n crossings,

of which n+ are positive and n− are negative (n = n+ +n−). Enumerate these crossings;

we then refer to specific crossings by this enumeration as the ith crossing for some

1 ≤ i ≤ n. We build the cube of resolutions for D through the process below; it is useful

to refer to Figure 2.5 regularly, where we illustrate the cube of resolutions associated to

a diagram of the positive trefoil.

Definition 2.2.1. A crossing in the diagram D can be smoothed by replacing it

with a 0-smoothing or a 1-smoothing . The result of smoothing every crossing

in D is a planar 1-manifold, which we call a smoothing of D.

A smoothing of D is an object in Cob3. Relative to the enumeration of the crossings

in D, we may write a smoothing of D as a binary sequence

σ = (σ1, . . . , σn) (2.1)

where σi ∈ {0, 1} indicates that the ith crossing is σi-smoothed. We refer to the smooth-

ing and binary sequence interchangeably. One may check that our given diagram has 2n

possible smoothings. It is often convenient to record the value

|σ| =
n∑
i=1

σi (2.2)

which records the number of 1-smoothings in σ.

Given a smoothing σ = (σ1, . . . , σn), we define a smoothing

σi = (σ1, . . . , σi−1, 1, σi+1, . . . , σn) (2.3)

which changes the ith smoothed crossing to a 1-smoothing. When σi = 1, we have σ = σi.

Note that any pair of smoothings that differ in a single coordinate can be written as a

pair σ, σi for some 1 ≤ i ≤ n.
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Definition 2.2.2. The pair of smoothings σ, σi are related by a smoothing cobordism

Siσ : σ → σi which is a product cobordism away from the ith smoothed crossing, where

it contains a saddle (illustrated in Figure 2.4).

A smoothing cobordism is a morphism in Cob3. We may record a smoothing cobor-

dism as a sequence Siσ = (σ1, . . . , σi−1, ?, σi+1, . . . , σn) where the ? is used to indicate

the index in which the 0-smoothing is changed to a 1-smoothing: for ? = 0, the binary

sequence describes σ, and for ? = 1, it describes σi.

Figure 2.4: A local cobordism relating a 0-smoothing and 1-smoothing by a saddle.

The cube of resolutions is formed by noting that the smoothings of D resemble the

corners of the n-cube [0, 1]n and the smoothing cobordisms resemble the cube’s edges.

Thus, one may visualize the cube of resolutions as a flattened cube in the plane. We have

done this for the positive trefoil in Figure 2.5.

Definition 2.2.3. The cube of resolutions for a link diagram D is the collection of

all possible smoothings of D and all possible smoothed cobordisms between them.

2.2.2 Choosing a topological quantum field theory

We now define a (2 + 1)-dimensional tqft G on Cob3 using the procedure described in

Appendix B. In particular, we construct a module A and linear maps on A, and we

assign these to the necessary collection of objects and morphisms in Cob3 in a way that

guarantees the resulting tqft is well-defined.
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Figure 2.5: The cube of resolutions for the positive trefoil.

Let R be a commutative ring with unity 1, and let A be a free, graded R-module of

rank 2 generated by 1 and x, where deg(1) = 1 and deg(x) = −1. Extend this grading

linearly across finite R-tensor products of A; that is,

deg(a1 ⊗ · · · ⊗ a`) =
∑̀
i=1

deg(ai) ai ∈ A (2.4)

We equip A with an associative, commutative algebra structure with unit 1 and multi-

plication m : A×A→ A defined by

m(1,1) = 1 m(1,x) = m(x,1) = x m(x,x) = 0 (2.5)

For notational convenience, we will occasionally write the multiplication as m(a, b) = ab.

Note that by the universal property of tensor products, m extends uniquely to a map

m : A⊗A→ A. A unit map ι : R→ A is defined by

ι(1) = 1 (2.6)
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We also equip A with a coalgebra structure with counit ε : A→ R defined by

ε(1) = 0 ε(x) = 1 (2.7)

and coassociative, cocommutative comultiplication ∆: A→ A⊗A defined by

∆(1) = (1⊗ x) + (x⊗ 1) ∆(x) = x⊗ x (2.8)

The degrees of these maps are deg(m) = −1, deg(ι) = 1, deg(ε) = 1, and deg(∆) = −1.

To define G on ob(Cob3), we set G( `) = A⊗`. To define G on mor(Cob3), recall

that it suffices to define G(S) for each of the fundamental cobordisms S in Appendix A.

Using the shorthand given there, we define

G( ) = ε G( ) = m G(id) = id

G( ) = ∆ G(perm) = ρ G( ) = ι
(2.9)

This definition of G extends to a definition on an arbitrary morphism S ∈mor(Cob3) by

decomposing S as a composition S = Sn ◦ · · · ◦ S1 of local fundamental cobordisms and

setting G(S) = G(Sn) ◦ · · · ◦ G(S1). By local we mean that each Si can be expressed as a

disjoint union of cylinders and one non-trivial fundamental cobordism , , , perm,

or . In this form, we see that the map G(Si) factors as a tensor product of morphisms

acting on the factors of A⊗`. To ensure that this definition is well-defined, we must ensure

that it does not depend on the decomposition of S. This is done by ensuring Equation

7.3 holds. We leave this as an exercise for the reader.

2.2.3 Applying a topological quantum field theory

We are now ready to apply our tqft G to the cube of resolutions. Recall that the cube

is a collection of objects and morphisms in Cob3. Applying G produces a collection of

R-modules and R-linear maps in ModR, which we then turn into a chain complex in the

next section.
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To a smoothing σ = (σ1, . . . , σn), we associate an R-module

G(σ) = A⊗` (2.10)

where ` is the number of components in the smoothing. A generator of G(σ) is an element

of the form a1 ⊗ · · · ⊗ a` where ai ∈ {1,x}. We commonly denote these elements as ασ.

To a smoothing cobordism Siσ : σ → σi, we associate an R-linear map

G(Siσ) : A⊗` → A⊗`±1 (2.11)

that decomposes as a tensor product of identity maps id and exactly one m or ∆,

depending on the type of saddle (note that this determines the number of factors in the

codomain A⊗`±1).

2.2.4 Khovanov chain complex

We are now ready to define the Khovanov chain complex. Applying the tqft G to the cube

of resolutions yielded a collection of of R-modules G(σ) and R-linear maps G(Siσ). These

objects and morphisms in ModR form their own cube, however, we must reorganize them

to form a chain complex.

To define the chain groups, we begin by assigning a bigrading to the generators

ασ of G(σ). These gradings are called the homological grading and quantum grading,

respectively, and they draw on the values from Equations 2.2 and 2.4.

h(ασ) = |σ| − n− (2.12)

q(ασ) = deg(ασ) + h(ασ) + n+ − n− (2.13)

The shift by n± ensures the gradings are invariant under Reidemeister moves, which we

will care about later. With respect to the homological grading, we will form a (co)chain

complex, as in the following definition.

Definition 2.2.4. Let D be a diagram for an oriented link, and let D be the set of all
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smoothings of this diagram. The R-module

C(D) :=
⊕
σ∈D
G(σ)

is called the Khovanov chain group associated to D.

The Khovanov chain group is notoriously bigraded, and with respect to the homolog-

ical grading, it will form a cochain complex. We highlight the homological grading with

Ch(D) =
⊕

{σ∈D | h(σ)=h}

G(σ) (2.14)

This allows us to express the Khovanov chain group with an equivalent definition, as a

graded R-module:

C(D) =

n⊕
h=1

Ch(D) (2.15)

Incorporating the quantum grading, we have a bigraded R-module

Ch,q(D) = {ασ ∈ Ch(D) | q(ασ) = q}

To define a (co)differential on Ch(D), we will combine all maps G(Siσ) associated to

a smoothing σ with h(σ) = h. As this ranges over multiple smoothings σ, and each

smoothing has multiple associated smoothing cobordisms Siσ ranging over admissible i,

we will first collect all of the maps leaving a fixed smoothing G(σ). Namely, we set

dσ :=
⊕

{i | σi 6=1}

(−1)ξ
i
σG(Siσ) (2.16)

where ξiσ =
∑

j<i σj . This sign adjustment ensures we obtain a chain complex (the reader

is encouraged to verify d ◦ d = 0). The differential is then defined by the following.

Definition 2.2.5. For a diagram D of an oriented link, the Khovanov differential

dh : Ch(D)→ Ch+1(D) is the R-linear map

dh :=
⊕

{σ | h(σ)=h}

dσ

The pair (C(D), d) is called the Khovanov chain complex of D.
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2.2.5 Labeled smoothings

The above definition of the Khovanov chain complex is certainly adequate, however, the

author never found it very intuitive. We present a more visual approach here. Recall

that a generator in G(σ) is an element of the form ασ = a1 ⊗ · · · ⊗ a` for ai ∈ {1,x}.

We can visualize ασ as a labeling of each of the ` connected components of σ with their

corresponding generator ai of A. This motivates the following definition.

Definition 2.2.6. For a generator ασ = a1⊗ · · · ⊗ a` of C(σ), a labeled smoothing of

σ is a decoration of the components of σ with their corresponding generators ai ∈ {1,x}

from A, which we call labels.

We will use the generator ασ and its corresponding labeled smoothing interchange-

ably. This allows us to use ασ algebraically as an element of A⊗` while also being able

to visualize and depict it as a decorated smoothing, as in the following figure.

Labeled smoothings and the differential The definition of G(Siσ) is easier to inter-

nalize by thinking in terms of labeled smoothings: applying the map G(Siσ) to a labeled

smoothing ασ will:

• locally alter the smoothing σ by changing the ith smoothed crossing from a 0-

smoothing to a 1-smoothing, yielding σi;

• adjust the labels on ασ corresponding to the component(s) within the smoothing-

change by applying the map m or ∆ (depending on the number of components)

and relabeling the new component(s) in σi with the resulting label(s);

• preserve all other connected components of σ and their labels.

On a general element in G(σ), this map factors linearly onto each labeled smoothing.
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Figure 2.6: Left, center: labeled smoothings for the (110) smoothing of the positive trefoil
from Figure 2.5. Right: a pqr-chain representing the sum of the two labeled smoothings
to the left.

Similarly, the definition of dh is easier to internalize with labeled smoothings: applying

the map dh to a labeled smoothing ασ repeats the process (above) of applying G(Siσ) to

ασ for all i where σi 6= 1. The resulting collection of labeled smoothings is then combined

as a sum. This allows us to easily determine when a labeled smoothing is a cycle, as in

the following proposition.

Proposition 2.2.7. A labeled smoothing ασ is a cycle if and only if every 0-smoothing

merges a pair of distinct, x-labeled components on σ.

Labeled smoothings and pqr-chains The visual appeal of labeled smoothings begins

to break down when we consider a general element in the Khovanov chain complex C(D),

which may contain many generators. For this purpose, it is helpful to build a shorthand

for a certain class of elements in C(D), called pqr-chains.

We give a very algebraic definition of these chains below, but to better visualize them,

one may think of them as follows. A pqr-chain is a decorated smoothing whose labels

consist of 1’s, x’s, and some number of letters p1, . . . , pm. For each letter pi, we create a

new labeled smoothing by changing each letter to a label: pi = 1 and pj 6=i = x. We then

collect each of these labeled smoothings into a sum, which we also refer to as the pqr-

chain. For example, we illustrate a pqr-chain in Figure 2.6 as a labeling of a smoothing

(right), which is interpreted as a sum of labeled smoothings. Alternatively, we have the

following algebraic definition.
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Definition 2.2.8. A pqr-chain is a finite sum of labeled smoothings ασ of the form∑̀
j=1

a1,j ⊗ · · · ⊗ a`,j

for which there is a subset K ⊂ {1, . . . , `} such that for each k ∈ K,

• ak,j =


1 if j = k

x if j ∈ K and j 6= k

0 if j /∈ K

• ai,j = ai,j′ for all i /∈ K and 1 ≤ j, j′ ≤ `.

For example, a pqr-chain on a smoothing σ with ` components might take the form

(1⊗ x⊗ 1⊗ x⊗ x) + (x⊗ x⊗ 1⊗ 1⊗ x) + (x⊗ x⊗ 1⊗ x⊗ 1)

Here we have K = {1, 4, 5}. The convenience of pqr-chains comes from the fact that

they are labelings on a common smoothing, and as a result, can be visualized as a single

labeling of this smoothing: for each 1 ≤ j ≤ `, if j ∈ K, label the jth loop with a letter of

the alphabet; if j /∈ K, label the jth loop with its unique label aj,?. We can extend this

notation further: if the letter we use on a loop is capitalized, we make the corresponding

summand negative. We will use this notation throughout the dissertation; for reference,

the first occurrence is in Figure 4.2.

2.2.6 Khovanov homology

The Khovanov chain complex produces homology groups in the usual way, by setting

Hh(D) = ker(dh)/im(dh−1)

So far, we do not have an excellent way of thinking of elements in ker(dh) or im(dh−1),

although Proposition 2.2.7 is somewhat useful. This makes visualizing elements inHh(D)

difficult, but one can go a long way by simply working with elements in the chain complex

Ch(D). In any case, we have the following definition.
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Definition 2.2.9. For a diagram D of an oriented link, the homology groups H(D) of

the Khovanov chain complex (C(D), d) are called the Khovanov homology of D.

These groups are finitely-generated and bigraded via the bigrading on the chain

groups. One important aspect of Khovanov homology groups is that they form a link

invariant, in the sense of the following two results (these results are proven by examining

the maps on Khovanov homology induced by Reidemeister moves, which we discuss in

the next section).

Theorem 2.2.10 ([Kho00]). Any pair of diagrams D0,1 representing isotopic links L0,1

have quasi-isomorphic Khovanov chain complexes C(D0) ' C(D1), and therefore, iso-

morphic Khovanov homology groups H(D0) ∼= H(D1).

As a result, one can talk about the Khovanov homology associated to a link, in the

sense that a link L has an associated quasi-isomorphism class C(L) of chain complexes

C(D), taken over all diagrams D representing any link isotopic to L. Similarly, we may

consider the isomorphism class H(L) of homology groups H(D). This notation is, how-

ever, not conventional and goes against the standard notation throughout the literature,

where C(L) and H(L) are used in place of C(D) and H(D), with the choice of diagram

D being understood from context. We adopt this convention, for consistency.

2.3. Khovanov homology of link cobordisms

In this section, we discuss the link cobordism induced maps on Khovanov homology.

We begin by discussing their construction [Kho00] and their up-to-sign equivalence un-

der boundary-preserving isotopy [Jac04]. Our future calculations will rely on explicit

computations of these induced maps, so we record the isotopy, Morse, and Reidemeister

induced maps, as calculated in [BN05]. We conclude by discussing the invariance of these

maps under local knotting (connect summing with a knotted 2-sphere).
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2.3.1 Cobordism induced maps on Khovanov homology

In [Kho00], it was shown that a link cobordism Σ : L0 → L1, represented by a surface

diagram S : D0 → D1, induces a bigraded chain map

C(Σ): Ch,q(D0)→ Ch,q+χ(Σ)(D1) (2.17)

with induced R-linear map H(Σ) : H(D0) → H(D1) that is similarly bigraded. We

recall the definition of this chain map here. First, recall that a surface diagram has an

associated movie {Dti}ni=1, where adjacent framesDti andDti+1 are related by an isotopy,

Morse move, or Reidemeister move. We define a chain map for each of these relations. A

planar isotopy induces the expected chain map: on a labeled smoothing ασ, the isotopy is

performed on σ and the labels from ασ are preserved for each component in σ throughout

the isotopy. A Morse move induces the chain map that it was assigned in Equation 2.9

by the tqft defining the Khovanov chain complex. The reader is encouraged to check

that any Morse move that changes the Euler characteristic χ(Σ) will equally change the

homological grading. Finally, a Reidemeister move induces a quasi-isomorphism on the

relevant chain complexes; note that we have not yet defined such quasi-isomorphisms

explicitly, however, we will do this the following section (for now, it is enough that such

maps exist). Thus, there is an associated chain map C(Dti) → C(Dti+1) between any

adjacent pair of frames in the movie. The map C(Σ) is the composition of all such maps,

and it induces the map H(Σ).

Definition 2.3.1. For a movie {Dti}ni=0 representing a link cobordism Σ: L0 → L1, we

call the associated chain map C(Σ): C(D0)→ C(D1) the induced chain map for Σ.

The induced chain map depends entirely on the choice of movie (or equivalently, the

choice of surface diagram), which fixes a (co)domain for the map. A different surface

diagram has an entirely distinct induced chain map, and therefore, we study a link

cobordism with a fixed projection R3 × [0, 1]→ R2 × [0, 1] in mind (and when studying
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multiple link cobordisms, we use a consistent same projection). For this reason, it is often

convenient to occasionally include the surface diagram in the notation for the induced

map: a link cobordism Σ represented by surface diagram S induces the chain map CS(Σ).

Remark 2.3.2. One might ask to what extent the induced chain maps associated to

distinct surface diagrams differ: for a link cobordism Σ : L → L′ represented by surface

diagrams S0,1 : D0,1 → D′0,1, do the Reidemeister induced maps ρ0,1 : D0,1 → D′0,1

produce an up-to-sign commutative diagram:

C(D0) C(D′0)

C(D1) C(D′1)

ρ0

CS(Σ) CS′ (Σ)

ρ1

As far as the author is aware, this need not hold in general. Moreover, it is not overly

important for it to hold, as we tend to study the induced chain maps with respect

to a specific surface diagram, as we have just mentioned. We will see later that this

property does hold for specific link cobordisms and specific classes of Reidemeister moves

(Proposition 3.3.2).

The potential significance of the induced chain maps associated to a link cobordism

were first noted within [Kho00], where they were conjectured to be invariant under

isotopy of Σ. This conjecture was made while working over the coefficient group R = Z[c],

and it was later shown that, in this case, the conjecture does not hold [Jac03]. It was later

shown that the conjecture also doesn’t hold under ambient isotopy [Jac04], however, the

same work proved that the conjecture holds when we restrict to boundary-preserving

isotopy and work over R = Z, as in the following theorem. From here, we use R = Z.

29



Theorem 2.3.3 ([Jac04]). For a link cobordism Σ : L0 → L1, with boundary links

represented by diagrams D0 and D1, the chain map

C(Σ): C(D0)→ C(D1)

is invariant, up to sign and up to chain homotopy, under smooth isotopy of Σ fixing ∂Σ

setwise; as a result, the induced map H(Σ) : H(D0) → H(D1) is invariant, up to sign,

under boundary-preserving isotopy of Σ.

This theorem is proven by first recalling that movies for isotopic link cobordisms

Σ0 ' Σ1 are related by a sequence of movie moves. It is then shown that the mini-

movies describing each movie move induce equivalent chain maps, up to chain homotopy

and up to sign. Thus, the sequence of movie moves between movies for Σ0 and Σ1 induces

a sequence of chain homotopies between the maps induced by those movies, as desired.

2.3.2 Explicit induced maps

We now define the chain maps induced by planar isotopy, Morse moves, and Reidemeister

moves, which we used in the previous section to define the induced maps on Khovanov

homology. In particular, we focus on an explicit definition of the Reidemeister induced

maps, as planar isotopy and Morse induced maps have been defined.

Isotopy induced chain maps The chain map induced by a planar isotopy of

diagrams is defined on a labeled smoothing ασ by applying the isotopy to the underlying

smoothing σ and preserving the labels form ασ throughout this isotopy.

Ornaments We pause to develop a convenient shorthand based on [BN05]. The

Morse and Reidemeister moves only change a diagram locally within some tangle. As

a result, for a labeled smoothing ασ, it suffices to define the induced chain maps on

the portion of ασ within this tangle, while leaving the rest of the labeled smoothing

unchanged. In order to properly define the chain map, we must account for all possible
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smoothings of the tangle, as well as all possible labels for each smoothing. As a result,

it is convenient to have a shorthand that simplifies the amount of information necessary

to express these maps. The idea is to reduce the definition to the level of smoothings

by defining a set of local ornaments that can be placed on a smoothing, each of which

corresponds to a predetermined chain map on the portion of the smoothing it adorns.

A chain map can then be defined on all possible labelings of a smoothing σ by simply

decorating σ with these ornaments: to any given labeled smoothing ασ, apply each of

the predetermined chain maps corresponding to the ornaments decorating σ.

The ornaments we need correspond, perhaps not surprisingly, to the three Morse

moves: births, deaths, and saddles. These decorations were described in Appendix A, and

we have used them in defining the tqft G, however, we recall them here for completeness. A

birth will locally add a crossingless unknot to an empty tangle; we decorate a smoothing

with the ornament consisting of a crossingless unknot with 4 external antennae to

indicate this addition. Similarly, a death removes a crossingless unknot, in which case we

decorate the smoothing with the ornament consisting of 4 internal antennae adorning

the component being removed. A saddle acts on a tangle with two unknotted arcs by

either merging or splitting the component(s) to which the arcs belong; in either case,

the result is a tangle . We decorate the smoothing with the ornament consisting of

a thin line that perpendicularly intersects the two components being merged or split.

The chain maps induced by each ornament was defined in Equations 2.5-2.8. We also

state them here (Table 2.1) to see how they act locally on a labeled smoothing.
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Morse Move Ornament Chain Map Definition of chain map

ι

ε

m

∆

Birth

Death

Saddle

7→

7→

7→

7→

7→

7→

7→

7→

1 1

1 x

x 1

x x

1

x

1

x

1 7→

1

x

x

0

1

x

x

x 1

1

1

0

+

Table 2.1: The chain maps induced by Morse moves.
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One additional decoration will be needed to define the Reidemeister induced maps,

consisting of a dot on any component of the smoothing. This decoration indicates the

application of two saddles (one splitting and then one re-merging) on the decorated

component. Using Table 2.1, one can verify that the map induced by this local cobordism

kills an x-labeled arc, but sends a 1-labeled arc to twice an x-labeled arc.

Morse induced chain maps The chain map induced by a Morse move is defined on

a labeled smoothing ασ by decorating the smoothing σ with the ornament corresponding

to the given Morse move.

Reidemeister induced chain maps The chain map induced by a Reidemeister

move is defined on a labeled smoothing ασ by decorating the smoothing σ with the

ornaments given in Tables 2.2-2.7. Note that the Reidemeister III induced maps, given

in Tables 2.4-2.7, are defined on a given labeled smoothing ασ by finding the correct

smoothing in the leftmost column and applying the sum of maps in the corresponding

row. We use I to denote an isotopy; empty cells correspond to the 0 map.

As any given decoration can consist of multiple ornaments, there is a natural question

of the order in which the corresponding chain maps should be applied; this will either be

irrelevant (i.e., the moves and their induced maps commute) or clear from context (e.g.,

a dotted arc on a birth requires the birth to occur before the map induced by the dotted

arc can be applied).

Remark 2.3.4. Note the 1
2 in the definition of the Reidemeister I induced chain map

in Table 2.2 does not conflict with Z as our coefficient group: the dotted arc will always

produce an even coefficient, so overall, the map will maintain an integral coefficient.
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2.3.3 Local knotting

A link cobordism is locally knotted if it can be written as Σ#S for a surface Σ and a

knotted 2-sphere S ⊂ R3 × [0, 1]. Locally knotting a surface will generally change the

boundary-preserving isotopy class of the surface. As such, we tend to omit this operation

from consideration, and consider the equivalence classes of surfaces in the 4-ball up

to boundary-preserving isotopy and up to local knotting. In order for an invariant to

distinguish these classes of surfaces, it must be invariant under both boundary-preserving

isotopy and local knotting. We have already seen that the induced maps on Khovanov

homology are invariant under boundary-preserving isotopy (Theorem 2.3.3), therefore,

we wish to guarantee they are also invariant under local knotting.

Theorem 2.3.5. The cobordism induced maps on Khovanov homology are invariant

under local knotting: given a link cobordism Σ : L0 → L1 and a knotted 2-sphere S, the

induced maps H(Σ) and H(Σ#S) agree up to multiplication by ±1.

Proof. The case L0 = ∅ was first established in [SS21], and this argument can be adapted

to the case where L0 6= ∅. Let B be a 4-ball intersecting Σ#S along the disk S \ D̊2

bounded by an unknot U in ∂B ∼= S3. We may perform a boundary-preserving isotopy

of Σ#S that drags B near L0. It then suffices to show that locally knotting the product

cobordism C : L0 → L0 induces the identity map. We can isolate B so that C#S

decomposes into a link cobordism C t (S \ D̊2) : L0 → L0 t U followed by a saddle

merging L0 and U . By [SS21, Theorem 4.2], which is also proven in this dissertation as

Theorem 5.2.2, the map induced by S \ D̊2 is identical to the map induced by the link

cobordism induced by a standard D2 in B. Moreover, the map on Khovanov homology

induced by a split cobordism will split as the tensor product of the individual cobordism-

induced maps, so C t (S \ D̊2) induces the same map as C t D2. Stacking the saddle

on the latter cobordism yields a surface isotopic to C rel boundary, so by Theorem 2.3.3

they induce the same map, as desired.
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Reidemeister Move Smoothing Chain Map

→

0

→

→

→

0

−1
2

−1
2

Table 2.2: The chain maps induced by Reidemeister I moves.

Reidemeister Move Smoothing Chain Map

→

→

−

0

0

+

Table 2.3: The chain maps induced by Reidemeister II moves.
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110

101

011

111

1 2

3

1 2

3

001

010

100

000

000 100 010 001 110 101 011 111

I

I

I

I

I

I

Table 2.4: The chain map induced by one of the Reidemeister III moves.
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I

110

101

011

111

1 2

3

1 2

3

001

010

100

000

000 100 010 001 110 101 011 111

I

I

I

I

I

Table 2.5: The chain map induced by one of the Reidemeister III moves, equivalent up
to isotopy, to the move in Table 2.4.
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I

110

101

011

111

1 2

3

1 2

3

001

010

100

000

000 100 010 001 110 101 011 111

I

I

I

I

I

Table 2.6: The chain map induced by one of the Reidemeister III moves.
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I

110

101

011

111

1 2

3

1 2

3

001

010

100

000

000 100 010 001 110 101 011 111

I

I

I

I

I

Table 2.7: The chain map induced by one of the Reidemeister III moves, equivalent up
to isotopy, to the move in Table 2.6.
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Chapter 3

Maps induced by surfaces in the 4-ball

The main purpose of this dissertation is to distinguish pairs of surfaces in the 4-ball up

to boundary-preserving isotopy through the 4-ball, and we do this by showing that these

surfaces induce distinct maps on Khovanov homology. When taken literally, this approach

is ill-conceived: surfaces in B4 are not the same as link cobordisms in R3 × [0, 1], and

isotopy of these surfaces in either setting is, a priori, unique to their ambient manifold.

This chapter addresses the interplay between isotopy of surfaces in B4 and the link

cobordisms they induce in S3 × [0, 1] and R3 × [0, 1].

In Section 3.1, we discuss the extension of Khovanov homology to link cobordisms

in S3 × [0, 1]. In Section 3.2, we show that a surface in B4 induces a link cobordism in

S3 × [0, 1], and this association preserves boundary-preserving isotopy classes: surfaces

in B4 are isotopic if and only if their induced link cobordisms in S3 × [0, 1] are isotopic.

Finally, Section 3.3 discusses the diagram dependence of the maps induced by surfaces

in the 4-ball.
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3.1. Extending to S3 × [0, 1]

The entirety of Chapter 2 can almost be repeated verbatim with S3 replacing R3. We

summarize the differences here. Let S3 = R3 ∪ {∞}. Note that a link cobordism in

S3 × [0, 1], defined by replacing R3 with S3 in Definition 2.1.1, will generically miss the

arc {∞} × [0, 1], inducing a link cobordism in R3 × [0, 1]. Thus, we may extend the

definition of Khovanov homology to links and link cobordisms: to a link in S3 we can

associate the Khovanov homology of the link in S3 \ {∞} = R3, and to a link cobordism

in S3× [0, 1] we can associate the map on Khovanov homology induced by the associated

link cobordism in
(
S3× [0, 1]

)
\
(
{∞}× [0, 1]

)
= R3× [0, 1]. Note that this is only possible

for a fixed link cobordism in S3 × [0, 1].

The sticky point is when we consider isotopy of link cobordisms in S3 × [0, 1], as

they do not generally induce isotopies in R3 × [0, 1]. In particular, a generic isotopy

will not necessarily miss the arc {∞} × [0, 1]. Fortunately, there is the only additional

isotopy we need to consider. A link cobordism in S3× [0, 1] can still be represented by a

surface diagram in R2× [0, 1] (through the link cobordism it induces in R3× [0, 1]), and

the surface diagrams associated to a pair of isotopic link cobordisms in S3 × [0, 1] are

related by a sequence of Carter-Rieger-Satio moves (see Section 2.1.4) and one additional

sweep-around-move, illustrated in Figure 3.1. This additional move was first addressed

in [MWW21], with the purpose of creating a functorial link homology theory for links in

S3 × [0, 1]. In particular, they prove that the movies for the sweep-around move induce

identity maps on Khovanov-Rozansky homology; later work reproved this theorem for

the Bar-Natan and Lee deformations of Khovanov homology, as well as the undeformed

Khovanov homology we use here [LS21]. We summarize this in the following theorem.

42



Theorem 3.1.1. The maps on Khovanov homology are invariant under the isotopy

described in the sweep-around-move, i.e. they associate the identity map to this movie.

As a result, Theorem 2.3.3 holds for link cobordisms in S3×[0, 1], implying that Khovanov

homology is functorial over link cobordisms in S3 × [0, 1].

Figure 3.1: The additional sweep-around-move on movies of surfaces in S3 × [0, 1].

3.2. Induced link cobordisms and induced maps

In this section, we extend Khovanov homology to surfaces in B4, much like the previous

section did for S3 × [0, 1]. As we have done previously, we view the 4-ball as a quotient

space B4 =
(
S3 × [0, 1]

)
/
(
S3 × {0}

)
with center 0 = π(S3 × {0}). A smooth, compact,

oriented surface properly embedded in B4 will miss the center, inducing a link cobordism

in B4 \N(0) ∼= S3× [0, 1]. More importantly, a generic isotopy of such surfaces will also

miss the neighborhood of a point in the complement of the surface, inducing an isotopy

between the associated link cobordisms in S3 × [0, 1]. We make this precise below.

Let E be a smooth, compact, oriented surface that is properly embedded in B4 and

has boundary link L = ∂E in the boundary S3 = ∂B4. For any point p ∈ (B4\E)◦, there

is a neighborhood N(p) missing E (by compactness), with which we have B4 \ N̊(p) ∼=

S3 × [0, 1]. The image of E under this identification is a link cobordism Σ: ∅ → L.

Definition 3.2.1. For a smooth, compact, oriented surface E that is properly embedded

in the 4-ball, the link cobordism Σ: ∅ → L produced in the previous paragraph is called

the induced link cobordism of E.
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As in the previous section, we may then associate the Khovanov homology of the

induced link cobordism to the surface E, as in the following definition.

Definition 3.2.2. For a link cobordism Σ : ∅ → L induced by a surface E in the 4-

ball, the associated map on the Khovanov chain complex C(Σ) : Z → C(L) is called the

induced chain map associated to E, and the map it induces on Khovanov homology

H(Σ): Z→ H(L) is called the induced map on Khovanov homology associated to E.

Previously, we saw that in order to extend from R3× [0, 1] to S3× [0, 1], we needed to

consider an additional sweep-around-move. This was because an isotopy of link cobor-

disms in S3× [0, 1] did not necessarily induce an isotopy in R3× [0, 1]. Fortunately for the

case at hand, an isotopy of surfaces in B4 does induce an isotopy of the corresponding

link cobordisms in S3 × [0, 1].

Proposition 3.2.3. A pair of surfaces E0,1 in the 4-ball are isotopic rel boundary in

the 4-ball if and only if their induced link cobordisms Σ0,1 in S3 × [0, 1] are isotopic rel

boundary in S3 × [0, 1].

Corollary 3.2.4. The induced map on Khovanov homology associated to a surface in

the 4-ball is invariant, up to sign, under boundary-preserving isotopy of the surface.

Remark 3.2.5. Put more generally, Khovanov homology is a functorial link homology

theory for surfaces in the 4-ball. This is, however, somewhat misleading, since we have

not defined a category of surfaces in the 4-ball. One could, perhaps, consider the category

whose objects are surfaces in the 4-ball up to boundary-preserving isotopy, and whose

morphisms are link cobordisms Σ: L→ L′ in S3× [0, 1], applied to a surface E : ∅ → −L

by composition Σ ◦ E : ∅ → L′ (that is, by attaching a collar containing Σ to B4 that

stacks Σ onto E).
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Proof of 3.2.4. Suppose that E0,1 are surfaces in the 4-ball having distinct induced maps

on Khovanov homology, up to sign. We will show E0,1 are not isotopic surfaces relative

to their boundary. As the induced maps are distinct, the induced link cobordisms Σ0,1

are not isotopic rel boundary in S3 × [0, 1] (by Theorem 2.3.3, extended to S3 × [0, 1] in

the previous section). Surfaces in the 4-ball whose induced link cobordisms are distinct

in S3× [0, 1] are distinct themselves in B4 (by Proposition 3.2.3), thus E and E′ are not

isotopic rel boundary in the 4-ball.

Proof of 3.2.3. Let Fg be a genus-g surface with boundary and h0,1 : Fg ↪→ B4 be

embeddings of Fg into the 4-ball that define E0,1 = h0,1(Fg). By assumption, there is a

boundary-preserving isotopy H : B4× [0, 1]→ B4 from E0 to E1. Our goal is to produce

an isotopy of link cobordisms in S3× [0, 1] by regarding each surface Et = H(Fg×{t}) as

a link cobordism with respect to a consistent identification of S3×[0, 1] with B4\(N(p))◦,

as produced in Definition 3.2.1. We do this by isolating a ball B that is never touched

by the image of this isotopy ∪tEt.

The space Fg × [0, 1] is compact, so its image ∪tEt is compact in the 4-ball. For

some point q ∈ ∂B4 \ L, there is a sufficiently small half-ball B in the 4-ball centered

at q that is disjoint from the image of the isotopy (if not, then some Et must contain

q by compactness, contradicting that each Et is properly embedded). If the ball has

radius ε > 0, then choose a point p ∈ B◦ such that d(p, q) = ε/2. The open ball of

radius ε/4 centered at p is disjoint from ∪tEt, and its complement can be identified with

S3× [0, 1]. Restricting H to this subspace defines a boundary-preserving isotopy between

the induced link cobordisms Σ0,1 of the surfaces E0,1 in the 4-ball.

3.3. Diagram dependence

In this section we discuss the diagram dependence of the induced chain maps associated

to certain link cobordisms. For an arbitrary link cobordism in R3 × [0, 1], the induced
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chain map depends on the chosen surface diagram, and more precisely, on the chosen

diagram for the boundary links. This diagram fixes a chain group for the domain and

codomain for the map, and when we change the surface diagram, these groups change by

a Reidemeister induced equivalence, as mentioned in Remark 2.3.2. We will show that

when we restrict to link cobordisms Σ : ∅ → L, different surface diagrams induce maps

that commute with certain Reidemeister induced maps.

Remark 3.3.1. Because we are studying the boundary-preserving isotopy class of Σ, this

dissertation only considers the link L, and not its isotopy class. Moreover, the permissible

chain homotopies defining C(L) arise from a sequence of link specific Reidemeister moves,

and not by any sequence of Reidemeister moves. More precisely, a diagram for a link L

is the image of some projection p : R3 → R2 onto a codimension-one, linear subspace.

Projections p, p′ : R3 → R2 defining diagrams D,D′ are related by a one-parameter

family of rotations rt : R3 × I → R3 with r0 = id taking one projection onto the other

p′ = p ◦ r1. A small perturbation of r makes p ◦ rt generic as a link projection, whereby

(p◦rt)(L) describes a sequence of link-specific Reidemeister moves fromD toD′, meaning

each Reidemeister move relates a pair of diagrams specific to L. The maps induced by

these Reidemeister moves will be called link-specific Reidemeister induced maps.

In our setting, C(L) denotes the chain homotopy class of C(D) up to link specific

Reidemeister induced chain homotopy equivalences, and H(L) denotes the isomorphism

class of H(D) under link-specific Reidemeister induced isomorphisms.
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Proposition 3.3.2. For a link cobordism Σ : ∅ → L with surface diagrams S, S′ : ∅ →

D,D′, the following diagram commutes, up to sign and up to homotopy, for link-specific

Reidemeister induced maps ϕ.

C(D′) C(D)

Z

ϕ

CS′ (Σ) CS(Σ)

Corollary 3.3.3. The induced map on Khovanov homology associated to a surface in

the 4-ball is independent, up to isomorphism, of the chosen surface diagram.

Proof of Proposition 3.3.2. The idea is to construct a pair of link cobordisms inducing ϕ◦

C(S′) and C(S) that are isotopic relative to L, whereby Theorem 2.3.3 implies the diagram

commutes in the desired manner. The tricky part is producing isotopic cobordisms whose

boundaries produce identical diagrams with respect to the same projection.

Let p, p′ : R3 → R2 be the projections defining the surface diagrams S and S′. Remark

3.3.1 gives a one-parameter family of rotations rt with r0 = id and p′ = p◦r1 that induces

a movie (p ◦ rt)(L) describing a sequence of link-specific Reidemeister moves from D to

D′. Consider the one-parameter family of link cobordisms describing the trace of L under

this movie:

As = r|L×[0,1−s] : r0(L)→ r1−s(L)

The link cobordism A−1
0 : r1(L) → L has surface diagram p(A−1

0 ) : D′ → D, so with

respect to p, the link cobordism A−1
0 ◦ r1(Σ) induces the map ϕ ◦ C(S′). Since Σ induces

C(S) with respect to p, it suffices to show A−1
0 ◦ r1(Σ) and Σ are isotopic relative to

L. Indeed, A−1
s ◦ r1−s(Σ) describes a boundary-preserving isotopy between these link

cobordisms, as desired.
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Remark 3.3.4. As a result of this proposition, we tend to omit the surface diagram

from the notation CS(Σ), opting for the shorthand C(Σ), as in Definition 3.2.2. In general,

the surface diagram is either clear from context or unnecessary for the argument. When

necessary, we will specify a surface diagram.
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Chapter 4

Closed surfaces in the 4-ball

The first consideration of induced maps on Khovanov homology toward obstructing iso-

topy of surfaces appeared in [Kho00], where it was conjectured that the maps induced

by a closed surface Σ : ∅ → ∅ could be used to distinguish knotted surfaces in R4. This

was later proven impossible in [Ras05, Tan06]. This chapter summarizes these results.

We may choose to work in B4, in S3 × [0, 1], or as it was done originally, in R3 × [0, 1].

To remain consistent with the text, the results are phrased in the setting of the 4-ball.

4.1. ϕ-numbers

A smooth, closed, oriented surface Σ embedded in the 4-ball can be regarded as a link

cobordism Σ : ∅ → ∅. This link cobordism induces a map H(Σ) : Z → Z. Note that

there is only one diagram for the empty-link, so Theorem 2.3.3 guarantees that H(Σ) is

invariant, up to sign, under ambient isotopy of Σ. More concisely, this map is determined

by where it maps the generator of Z, leading to the following definition.

Definition 4.1.1. The ϕ-number of a smooth, closed, oriented surface Σ ⊂ B4 is the

integer

ϕ(Σ) := H(Σ)(1) ∈ Z

determining the induced map H(Σ): Z→ Z.
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The ϕ-number is a concise way of encoding the induced map on Khovanov homology,

and it shares the same up-to-sign invariance under ambient isotopy of Σ as the induced

map. For completeness, we summarize this through the following result.

Proposition 4.1.2. The ϕ-number of a smooth, closed, oriented surface Σ embedded in

the 4-ball is an up-to-sign invariant of the ambient isotopy class of Σ.

The ϕ-numbers were originally conjectured to distinguish knotted tori. The restriction

to knotted tori is justified in the following proposition.

Proposition 4.1.3. The ϕ-number of a surface Σ ⊂ B4 is trivial unless it has genus 1.

Proof. The induced map is (0, χ(Σ))-graded, so the ϕ-number can be written explicitly

ϕ(Σ) = H(Σ)(1) ∈ H0,χ(Σ)(∅).

Because H(∅) is supported in the (0, 0)-grading, the ϕ-number is necessarily trivial for

χ(Σ) 6= 0, or equivalently for g(Σ) = 1.

In later work [CSS06], the ϕ-numbers were calculated for certain families of knotted

tori; in that work, they used the name Khovanov-Jacobsson numbers for what we call

ϕ-numbers. Eventually, ϕ-numbers were fully classified in an unexpected way.

Theorem 4.1.4 ([Ras05, Tan06]). The ϕ-number of a connected surface Σ in the 4-ball

is completely determined by genus g(Σ). In particular, ϕ(Σ) = ±2 when g(Σ) = 1.

For disconnected surfaces, this result acts multiplicatively on the components of the

surface, i.e., ϕ(Σ) = 2m when Σ has m components.
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4.2. Calculating ϕ-numbers

It is useful to calculate the ϕ-number of certain closed surfaces in the 4-ball, as it provides

insight into the constructions from Chapter 2. Below, we calculate the ϕ-number of an

unknotted 2-sphere, as well as the ϕ-class associated to movies of the unknotted torus.

Example 4.2.1. In Figure 4.1, we calculate the ϕ-number ϕ(S) associated to an unknot-

ted 2-sphere S. The 2-sphere may be decomposed as S = ◦ , whereby H(S) : Z→ Z

decomposes into H(S) = ε ◦ ι, which we calculate diagramatically below. As expected,

the resulting map is trivial.

Example 4.2.2. In Figure 4.2, we calculate the ϕ-number associated to a knotted torus,

resulting in a map 1 7→ 2, as expected. This is done similarly in 4.3, where the result is a

map 1 7→ −2. Note that these movies both represent unknotted tori. More complicated

movies representing knotted tori can be obtained, and in light of Theorem 4.1.4, they

will nevertheless produce maps 1 7→ ±2.

1 1 0

Figure 4.1: The map on Khovanov homology induced by a sphere.
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p

q
1 x 2  2

Figure 4.2: The map on Khovanov homology induced by a torus.

1
p

q

p

q
1

1

1

Q

P
x-2 -2

Figure 4.3: The map on Khovanov homology induced by a second torus.
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Chapter 5

Relative surfaces in the 4-ball

In this chapter, we consider the natural extension of Chapter 4 to surfaces with boundary.

Analogous to the definition of ϕ-numbers, in Section 5.1, we use the maps on Khovanov

homology induced by surfaces with boundary to extract an invariant of the boundary-

preserving isotopy class of Σ, called the ϕ-class of the surface. In Section 5.2, we char-

acterize this invariant for Seifert surfaces and surfaces bounding the unlink. In Section

5.3, we use ϕ-classes to produce families of unique slice disks bounding a common link.

Finally, in Section 5.4, we show that this invariant can be used to obstruct sliceness of

certain knots

5.1. ϕ-classes

A smooth, compact, oriented surface Σ ⊂ B4 bounding a link L ⊂ S3 can be regarded

as a link cobordism Σ: ∅ → L, as described in Section 3.2. The associated induced map

on Khovanov homology is invariant, up to sign, under boundary-preserving isotopy of Σ.

More concisely, this map is determined by where it maps the generator of H(∅) = Z.
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Definition 5.1.1. The ϕ-class of a smooth, compact, oriented surface Σ ⊂ B4 with

boundary link L ⊂ S3, represented by a diagram D, is the Khovanov homology class

ϕ(Σ) := H(Σ)(1) ∈ H(D)

represented by the cycle

φ(Σ) := C(Σ)(1) ∈ C(D)

which we call the φ-cycle of Σ.

The ϕ-class is a concise way of encoding the induced map on Khovanov homology,

and it shares the same up-to-sign invariance under boundary-preserving isotopy of Σ as

the induced map. For completeness, we summarize this through the following result.

Corollary 5.1.2. The ϕ-class of a smooth, compact, oriented surface Σ properly embed-

ded in the 4-ball is an up-to-sign invariant of the boundary-preserving isotopy of Σ.

When calculating the induced maps on Khovanov homology, we generally work on

the chain level, so it is important to note the relevance of the φ-cycle: these are the cycles

that we calculate and that, in order to use as an invariant, we hope to distinguish. As a

sanity check, we note that the φ-cycle represents a homology class, i.e., it is a cycle in

H(D). This fact follows by construction: 1 ∈ C(∅) is a cycle (because C(∅) is supported

in the (0, 0)-grading so d(1) must be 0) and C(Σ) is a chain map (which sends cycles to

cycles), so φ(Σ) = C(Σ)(1) must be a cycle. More directly, we have

d(φ(Σ)) = d(C(Σ)(1)) = C(Σ)(d(1)) = C(Σ)(0) = 0

so φ(Σ) is a cycle in C(D) representing the homology class ϕ(Σ) in H(D).

Corollary 5.1.3. The φ-cycle is a cycle representing the ϕ-class.

Diagram independence of the φ-cycle and ϕ-class follows from the discussion in Sec-

tion 3.3, however, we discuss diagram dependence of the ϕ-class, with the aim of proving
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Corollary 5.1.4 below. For the surface diagram S : ∅ → D of the given link cobordism,

defined with the same projection as D, recall the notation from 2.3.1 and write

ϕD(Σ) := HS(Σ)(1) ∈ H(D)

Suppose we have two diagrams D0,1 for the boundary link L of the given link cobordism.

By Proposition 3.3.2, any sequence of link-specific Reidemeister moves relating D0 and

D1 induces an equivalence Ψ : H(D0) → H(D1) satisfying Ψ ◦ HS0(Σ) = ±HS1(Σ). In

particular, we have the following up-to-sign equivalence

Ψ(ϕD0(Σ)) = Ψ(HS0(Σ)(1)) =
(
Ψ ◦ HS0(Σ)

)
(1) = HS1(Σ)(1) = ϕD1(Σ)

We conclude that the ϕ-classes ϕD0 and ϕD1 vary, up to sign, by a Reidemeister induced

isomorphism.

Corollary 5.1.4. The ϕ-class is independent, up to isomorphism, of the chosen diagram.

Remark 5.1.5. The author has been asked many times if any sequence of Reidemeister

moves will preserve the ϕ-class of a link cobordism Σ : ∅ → L. This question can be

interpreted in two ways, and both are not relevant to our work. First, one might ask that

instead of the link-specific Reidemeister moves used in Proposition 3.3.2, we use any

sequence of Reidemeister moves. This is not necessary to consider in the category with

which we work: we are considering the link L itself, not its isotopy class. Moreover, in

this setting, the Proposition would relate the two maps induced by two surface diagrams

for Σ with a completely unrelated map induced by an arbitrary sequence of Reidemeister

moves. This map has nothing to do with the surface Σ or its boundary-preserving isotopy

class. A second interpretation of this question might be that, given a sequence of Reide-

meister moves between diagrams D0 and D1 representing links L0 and L1, the cylinder

A : L0 → L1 produced by tracing the isotopies induced by each move should preserve

the φ-cycle and ϕ-class. This is, of course, true! The following diagram is commutative

by construction:
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H(D0) H(D1)

Z

H(A)

H(Σ) H(A◦Σ)

whereby the ϕ-class for Σ and for A ◦ Σ will be preserved by H(A).

Throughout the remainder of this chapter, we will discuss certain methods for calcu-

lating and applying the φ-cycle associated to surfaces in the 4-ball. Next up, we calculate

the ϕ-class for two families of surfaces in the 4-ball.

5.2. Calculating ϕ-classes for familiar families of surfaces

Here, we discuss the classification of ϕ-classes for certain familiar families of surfaces,

namely, Seifert surfaces and surfaces bounding the unlink, proven in [Swa10, SS21].

5.2.1 Seifert surfaces

For a diagram D of a link L ⊂ S3, recall that Seifert’s algorithm produces a surface

ΣD ⊂ S3, called the Seifert surface of D. Pushing this surface into the 4-ball produces a

link cobordism Σ: ∅ → L, and the associated map

H(Σ): Z→ H(D)

has been completely classified, which we briefly mention here. In [Swa10, SS21], it was

shown that the associated φ-cycle is a collection of labeled smoothings on the orienta-

tion induced smoothing σD of the diagram D. Moreover, they produce a graph Γ from

σD, with vertices the connected components and edges the 0- and 1-smoothings, that

completely determines the φ-cycle: the homotopy type of the subgraph Γ0 (containing

only 0-smoothings as edges) determines φD(ΣD).
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Theorem 5.2.1 ([Swa10, SS21]). The ϕ-class ϕD(ΣD) associated to a Seifert surface

ΣD is determined by graphical conditions on the positive and negative crossings in the

diagram D.

This result is a computational advance, being a quick way to find the ϕ-class for

some surfaces. It has been applied for good use though: using the Seifert class ϕ(ΣD)

associated to certain pretzel knots, their sliceness was verified, as in Corollary 26-27 of

[Swa10] or Theorem 2.5 of [SS21].

5.2.2 Surfaces bounding the unlink

Here, we classify ϕ-classes for surfaces bounding the unlink, as in the following theorem.

Theorem 5.2.2. Let U be the n-component unlink and D its crossingless diagram. The

φ-cycle for a connected link cobordism Σ : ∅ → U is determined by its genus:

(a) if g(Σ) = 0, then φD(Σ) is, up to sign, a pqr-chain on the components of D;

(b) if g(Σ) = 1, then φD(Σ) is, up to sign, twice the all x-label on D;

(c) if g(Σ) ≥ 2, then φD(Σ) = 0.

This theorem is proven by utilizing Theorem 4.1.4 and the bigrading. This result is

also a computational advance, however, it was put to good use in Theorem 2.3.5.

Remark 5.2.3. Theorem 5.2.2 assumes that Σ is a connected surface. In the case that

there are multiple components, [GL20] shows that for split links, the induced map C(Σ) is

determined by the maps induced between components of Σ, independent of their potential

linking. Thus, this theorem can be applied to each component of Σ individually.
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5.3. ϕ-distinguished families of slice disks

The motivation for defining and studying ϕ-classes is to distinguish smooth, compact,

oriented surfaces that are properly embedded in the 4-ball up to boundary-preserving

isotopy. In the absolute case, the ϕ-numbers were unable to distinguish any closed sur-

faces in the 4-ball. We will see that this is not the case for ϕ-classes, which are able to

distinguish families of slice disks for a given knot.

Definition 5.3.1. A family of smooth, oriented, compact surfaces Σ1, . . . ,Σn that

are properly embedded in the 4-ball and share a common boundary link L ⊂ S3 are

ϕ-distinguished by their maps on Khovanov homology if they have pairwise distinct

ϕ-classes up to sign, that is, ϕ(Σi) 6= ±ϕ(Σj) for all i 6= j.

Remark 5.3.2. Because the induced maps on Khovanov homology do not detect local

knotting (connect summing with a knotted 2-sphere, see Section 2.3.3), then a pair of

surfaces Σ0,1 that are ϕ-distinguished cannot be related by a local knotting, namely,

Σ0 6' Σ1#S for any knotted 2-sphere S.

5.3.1 A pair of slices for 946

Here, we distinguish a pair of slice disks for the knot 946. A diagram for this knot is

recorded in the center of Figure 5.1, and a pair of slice disks D` and Dr for 946 are given

by the two bands ` and r (left and right). To the left and right hand side, we see the

corresponding disks D` and Dr after being pushed into the boundary 3-sphere.

These slice disks have been known to be distinct, up to boundary-preserving isotopy,

and therefore, they are perfect candidates for testing the abilities of the ϕ-classes. Indeed,

we have the following theorem, proving half of Theorem 1.3.1.
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` r

Figure 5.1: A diagram for the knot 946 together with a pair of slice disks (drawn in S3),
described by the indicated band moves ` and r.

Theorem 5.3.3. The slice disks D` and Dr for 946 are ϕ-distinguished.

Proof. In Figures 5.3 and 5.4 we calculate the ϕ-cycles forD` andDr, which for reference,

are listed in Figure 5.2. Note that our movies are obtained by reversing the movies that

the band moves ` and `′ describe. To see that D` and Dr are ϕ-distinguished we show

that the given φ-cycles represent distinct homology classes, up to sign; or equivalently,

Φ± = φ(D`)± φ(Dr)

are both nontrivial cycles in C(946). Nontriviality of this cycle can be determined quickly

with the code from Section 6.2, which shows that the cycles Φ± are not boundaries

in C(946) (see Appendix C). We apply a second method for determining nontriviality,

with the intention of extending this result to a broader family of ϕ-distinguished slice

disks. This method uses (so-called) trim maps T : L → L′, which resolve a crossing

by attaching a 1-handle, thus trimming the link L to produce a link L′ represented

by a diagram with one fewer crossing. The idea is that, if the resulting cycle T (Φ±)

represents a nontrivial class, then it must have been that Φ± also represented something

nontrivial. These maps are explicitly calculated in [SS21, Section 5]. Applying three trim

maps to the crossings in the left column of the diagram, any labeled smoothing with a

1-smoothing in the left column is killed. There is only one such labeled smoothing whose

59



left column contains only 0-smoothings. As a result, the three resolution maps produce

a single labeled smoothing: the all 1-label of the 1-smoothing for the trimmed diagram.

An analysis on the differential entering this extreme homological grading shows that this

cycle is never a boundary (see [Ell09, Example 2.2] and [Swa10, Proposition 10]).

φ(Dr) =

φ(D`) =
p qp q p q

a b p q

p q

p q

a b

p qp q

+

+

+

+

+

+

+

+

+

+

+

+

+

++

Figure 5.2: The φ-cycles for D` (top) and Dr (bottom).

Remark 5.3.4. Although the movie descriptions for these surfaces produce cycles be-

longing to Khovanov chain complexes associated to the same diagram of 946, these chain

complexes differ in their enumeration of the diagram’s crossings. This is fine, as these

complexes are related by a chain homotopy that only affects the signs of certain labeled

smoothing in φ(Σ`) and φ(Σr). These sign changes will not cause any unwanted cancel-

lation, or the effect of the resolution maps. The net result is that the sign of the resulting

labeled smoothing may change, and this will have no effect on the nontriviality of c±.

Remark 5.3.5. The above trim maps produce non-orientable surfaces, but they still

induce chain maps on Khovanov homology. In fact, [LS21] proved that Khovanov ho-

mology is functorial over non-orientable surfaces. Additionally, they noted the above

proof of Theorem 5.3.3 says more than what we have presented: attaching the non-

orientable cobordism produced by the trim maps produces examples of ϕ-distinguished,

non-orientable surfaces. One trim gives a pair of Möbius bands for 820, two produces a

pair of Klein bottles for 61, and three produces non-orientable surfaces bounding 31#31.
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Figure 5.3: A movie description of the surface Σ` and the calculation of its φ-cycle.
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Figure 5.4: A movie description of the surface Σr and the calculation of its φ-cycle.
.
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5.3.2 A pair of slices for 61

In Figure 5.5, we see a pair of slice disks E` and Er for the knot 61, again expressed by

a pair of band moves recorded on the given diagram D for 61. Unlike the slices for 946,

it is not easily to see E` and Er after pushing them into S3, as the have far too many

layers and intersections to be seen plainly on a page.

It is known that E` and Er are distinct up to boundary-preserving isotopy, but it is

interesting that they can be distinguished by their ϕ-classes, as in the following theorem.

This proves the remaining half of Theorem 1.3.1.

Figure 5.5: A pair of slice disks bounding 61.

Theorem 5.3.6. The slice disks E` and Er for 61 are ϕ-distinguished.

Proof. We give the φ-cycles in Figure 5.6. The calculations are done similar to those

for the slices of 946, with the additional use of a Reidemeister III move. As before, the

enumerations induced by the two movies differ, however, in this case, there is a common

smoothing between the cycles. Following the enumerations for these crossings, we see

that both enumerations express this smoothing with the binary sequence 101000, and

therefore, they chain homotopy relating the two chain complexes will be the identity on

this element. We distinguish these cycles in Appendix C using the SageMath program

from Section 6.2.
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Figure 5.6: The φ-cycles for the two slice disks from Figure 5.5.

5.3.3 A family of slices for #k(946)

The above distinction of slice disks for 946 generalizes to an infinite family of knots that

exhibit an arbitrarily large number of slice disks.

Corollary 5.3.7. The knot #m(946) bounds at least 2m-many ϕ-distinguished slice disks.

Proof. First, observe that there are 2m-many slice disks for #m(946) obtained by boundary-

summing m-many disks chosen from the two slice disks D` and Dr from Theorem 5.3.3.

We illustrate these disks in Figure 5.7 with a windmill diagram, with m-many inward-

facing copies of 946 as the sails of the windmill and m-many windshafts which connect

the sails in the center of the diagram. Movies for the 2m-many slices are obtained by

choosing either of the movies from Theorem 5.3.3 for each sail and using m-many Morse

saddles to merge their final frames along the windshafts.

Now, choose a pair of slices Σ0,1 from the 2m-many slices described above, and pro-

duce their φ-cycles per the given movie descriptions. As in the proof of Theorem 5.3.3,

we will trim the diagrams to simplify the cycles, although in this case, we must trim

each sail. Trim the left column of a sail when the movie of Σ0 shows Σr and trim the
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Figure 5.7: The windmill diagram (left) for #5(946) and a smoothing (right) from the
φ-cycle associated to one of its slice disks.

right column when it shows Σ`. Because Σ0 and Σ1 differ in their choice of movies for

the sails, one of the trims will kill φ(Σ1). The only remaining element of φ(Σ0) will be

the all 1-label of the 1-smoothing of the trimmed diagram of #m(946). As before, such

an element represents a nontrivial homology class in the Khovanov homology of this

trimmed diagram. The result follows just as it did in the previous two results.

Slight generalizations to the above techniques allow us to produce even more families

of knots with large numbers of slice disks. We simply increase the crossing count in each

column of the odd, three-stranded pretzel knots.

Corollary 5.3.8. For n odd and |n| > 1, the pretzel knot P (n,−n, n) bounds at least

two distinct slice disks.

Corollary 5.3.9. For n odd and |n| > 1, the knot #m

(
P (n,−n, n)

)
bounds at least

2m-many distinct slice disks.
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5.3.4 An extended family of prime knots

The above calculations can be extended to produce examples of prime knots with an

arbitrarily large number of ϕ-distinguished slices. Our methods work broadly for any

family of ϕ-distinguished surfaces, so we describe them in generality before giving a

specific example. The trick is to extend a family of ϕ-distinguished link cobordisms

by a ribbon concordance, i.e., a genus-0 surface with no local maxima. Ribbon concor-

dances are well suited to ϕ-classes because they induce injections on Khovanov homology

[LZ19], and thus, preserve the uniqueness of ϕ-classes. Let Σ,Σ′ : ∅ → K be a pair of

ϕ-distinguished link cobordisms, ϕ(Σ) 6= ϕ(Σ′). Any ribbon concordance C : K → K ′

induces an injection H(C) : H(K) → H(K ′) on Khovanov homology, whereby the link

cobordisms C ◦ Σ and C ◦ Σ′ are also ϕ-distinguished, having

ϕ(C ◦ Σ) = H(C)(ϕ(Σ)) 6= H(C)(ϕ(Σ′)) = ϕ(C ◦ Σ′)

This allows us to produce (potentially) new families of ϕ-distinguished link cobordisms

by simply extending any known family of ϕ-distinguished link cobordisms. In Theorem

5.3.10 below, this is done for a specific family of slice disks extended by the ribbon

concordance from [KL79], illustrated in Figure 5.8, proving Theorem 1.3.2.

T1 T2 Tm

b

T

Figure 5.8: The band move b on the given diagram describes the ribbon concordance
defined in [KL79] between a composite knot, expressed as a sum of prime tangles, and a
prime knot.
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Theorem 5.3.10. The prime knot Km in Figure 5.9 bounds at least 2m-many ϕ-

distinguished slice disks.

Proof. We begin by describing a general ribbon concordance from any given knot K to a

prime knot K ′, which was defined in [KL79]. We can express K as a sum of prime knots,

and in particular, we may find a knot diagram that is a tangle-sum of finitely many prime

tangles T1, T2, . . . , Tm. With these tangles, produce the knot K ′ in Figure 5.8, consisting

of a tangle T and the tangles from K. The aforementioned paper proved that this knot is

prime, and moreover, they noted that the band move b describes a link cobordism from

K ′ to a two-component unlink consisting of K together with an unknot, which we will

cap off. Reversing this cobordism produces a ribbon concordance C : K → K ′ from the

(arbitrary) knot K to a prime knot K ′.

Applying this construction to K = #m(946) produces the prime knot Km in Figure

5.9. The bands on the diagram describe the 2m slice disks for Km. As Corollary 5.3.7

ϕ-distinguished the 2m slice disks for #m(946), these slice disks for Km are also ϕ-

distinguished, as desired.

For reference, we have drawn K2 in Figure 5.10 and one of the four ϕ-distinguished

slice disks (pushed into S3) in Figure 5.11.

Figure 5.9: The prime knot Km with band moves describing the 2m slice disks.
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Figure 5.10: The knot K2 with band moves describing the four slice disks it bounds.

Figure 5.11: One of the four unique slice disks bounding K2, viewed in the 3-sphere.

It is interesting to note that it is much harder to produce an extended family of slice

disks for the knot #m(61) and its corresponding prime knot. In particular, it was crucial

that we show that the slice disks for #m(946) were ϕ-distinguished. In that case, the

φ-cycle was fairly tame and acted nicely during the boundary-summing of the disks. In

the #m(61) case, the φ-cycles are unpleasant, to say the least. Nevertheless, we expect

that with sufficient tenacity, the same conclusion can be reached.
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5.4. Obstructing sliceness with ϕ-classes

We now change direction and discuss another application of ϕ-classes: obstructing slice-

ness of knots. In particular, by implementing the characterization of ϕ-classes for closed

surfaces (Theorem 4.1.4), we obtain the following result.

Theorem 5.4.1 ([Swa10]). For a slice knot K, the ϕ-class of a link cobordism Σ: ∅ → K

is nontrivial if g(Σ) ≤ 1. In particular, slice disks have nontrivial ϕ-classes.

Proof. For g(Σ) = 0, produce a closed surface Σ′ = −(Σ#T 2) ◦ Σ with genus 1. By

Theorem 4.1.4, we must have H(Σ′)(1) = 2, and therefore

2 = H(Σ′)(1) =
(
H(−(Σ#T 2)) ◦ H(Σ)

)
(1) = H(−Σ#T 2)(ϕ(Σ)).

A trivial ϕ(Σ) kills the right-most term, producing a contradiction. The proof with

g(Σ) = 1 is done similarly: compose Σ with a slice disk to yield an identical calculation.

Remark 5.4.2. In [SS21, Swa10], the above result was used to obstruct the sliceness of

certain odd, three-stranded pretzel knots. In particular, it was shown that the ϕ-class

associated to the Seifert surface bounding these knots is trivial. More generally, one can

attempt to characterize the sliceness of all odd, three-stranded pretzel knots; this was

done in [GJ11] using numerous tools, including gauge theory. It is not known if this

result can be recovered using only ϕ-classes. Initial attempts seem promising: the Seifert

surface for P (3, 5, 7) has a trivial ϕ-class, and so by Theorem 5.4.1 is not slice, and

moreover, this knot is not obstructed from being slice in [SS21, Swa10].

Remark 5.4.3. More generally, any knot with unknotting number 1 will bound a genus-

1 surface: describe the crossing change that produces an unknot-diagram as a sequence

of 1-handle attachments and Reidemeister I moves; untangle the unknot-diagram with
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Reidemeister moves; attach a 2-handle. As there are many unknotting number 1 knots

(e.g., any Whitehead double), this might lead to a broader examination of sliceness ob-

structions through ϕ-classes. One such example, or perhaps non-example, is the Conway

knot, which has unknotting number 1. For two genus-1 surfaces bounding the Conway

knot, we calculate the ϕ-class, only to find that they are nontrivial Khovanov homology

classes (see Appendix C).

Remark 5.4.4. The s-invariant is known to provide information on the 4-ball genus

of knots. It is perhaps not surprising that the ϕ-class can also be used to produce in-

formation regarding the 4-ball genus of knots. It is unknown if there is a relationship

between the s-invariant and ϕ-classes. In light of the result above, it would be of interest

to find examples of a knot K bounding a genus-1 surface Σ for which s(K) = 0 and

ϕ(Σ) = 0, or alternatively, s(K) > 0 and ϕ(Σ) 6= 0. This would imply that, in terms

of detecting sliceness, one invariant is stronger than the other. It seems less likely that

they are equivalent as sliceness obstructions.

5.5. Reflections on ϕ-classes

Using ϕ-classes can be very difficult. They work well with the theory of Khovanov ho-

mology, as we saw in the prime examples, but they are exceedingly difficult to calculate

and to distinguish. In the best situations, they require significant levels of endurance

to compute and a completely separate technique to distinguish. Unfortunately, in most

cases, the level of endurance is inhuman and the (known) technique to distinguish cannot

be done by a computer. Nevertheless, in the next chapter, we describe this technique for

distinguishing Khovanov homology classes.
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Chapter 6

Triviality of Khovanov homology classes

In the previous chapter, we saw that many arguments hinged on the ability to distinguish

Khovanov homology classes, or equivalently, to show that their difference is nontrivial.

What does it mean to be trivial in Khovanov homology? We answer this question in

Section 6.1. The following Section 6.2 gives a computer program that determines triviality

of Khovanov homology classes. The final Section 6.3 shows how to use this program for

a specific application.

6.1. Boundaries in Khovanov homology

Suppose D is a diagram for some oriented link, and consider the Khovanov homology

H(D). Fix a homological grading h ∈ Z, and choose an arbitrary generator ϕ ∈ Hh(D).

This class is represented by a cycle φ ∈ ker(dh) ⊂ Ch(D). By definition,

Hh(D) = ker(dh)/im(dh−1)

Thus, ϕ is trivial if φ ∈ im(dh−1), i.e., if it is a boundary. To determine when an arbitrary

class is trivial, it suffices to understand when it is a boundary in the Khovanov chain

complex. Previous work has attempted to describe when certain cycles are boundaries

[Ell09, Ell10]. Namely, these works considered cycles that consist of a single labeled
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smoothing β ∈ Ch(D). Unfortunately, this is not reflective of a general cycle in the

Khovanov chain complex, which is generally a combination of labeled smoothings

φ =

n∑
i=1

biβi bi ∈ Z, βi ∈ Ch(D)

Many of these labeled smoothings do not appear in the aforementioned work because

they themselves are not cycles. Moreover, for φ to be a boundary, it is not necessary that

each labeled smoothing αi is itself a boundary.

We will use a more direct approach to showing a cycle is a boundary. First, chose a

basis for each chain complex with a relevant homological grading

Ch−1(D) = 〈α1, . . . , αm〉

Ch(D) = 〈β1, . . . , βn〉

With respect to these bases, we may express φ and dh−1 as matrices b and M , respec-

tively. In particular, the basis for Ch(D) allows us to write φ =
∑n

i=1 biβi, with which

we define a column vector b = (bi). Similarly, the map dh−1 can be written as a matrix

by determining how it acts on the basis vectors for Ch−1(D), namely

d(αi) =

n∑
j=1

bi,jβj

We then setM = (bi,j). Finally, to determine whether b is a boundary, it suffices to find

a solution to the equation Mx = b. This can be done with numerous methods in linear

algebra (e.g., by row-reducing the augmented matrix [M |b]). The chosen method should

be sensitive to the coefficient group in use (here we have specified Z coefficients).

6.2. A SageMath program

In this section, we describe a SageMath program which determines the triviality of a

Khovanov homology class. The program takes in an oriented link diagram and cycle,

with which it calculates the Khovanov chain complex and applies the above argument

to determine if the cycle represents a boundary.
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Our program uses Python, with the exception of a single SageMath command. The

description we give below will be from the perspective of a SageMath terminal running

on a Windows machine. To begin, download the triviality.py file (available here) and

save it to your desktop. Open SageMath and load the file by executing the following:

1 sage: load(’/home/sage/Desktop/triviality.py’)

The path to your file may change depending on your OS.

2

1 2 3 4

1

32 4

32 4

1

1

Figure 6.1: An enumeration for the crossings, components, and strands of a link.

6.2.1 Encoding an oriented knot diagram

Let D be an oriented link diagram with n crossings. We encode a knot diagram by using

a similar method to [BN02], which was inspired by Dowker-Thistlethwaite notation. The

extra information from this method allows us to encode elements in the Khovanov chain

complex. To begin, choose an enumeration xi of the crossings, an enumeration ci of the

link components, and an enumeration si of the strands 1 of each link component so that

successive strands in the enumeration agree with the orientation of the link. This is done

for a link in Figure 6.1; we have used colors and shapes to help indicate which numbers

correspond to which enumerations. Note that each strand corresponds uniquely to a

pair of positive integers si and ci for the chosen enumerations of the link. These pairs
1By a strand, we mean any connected component of the diagram with double points removed.
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of positive integers allow us to uniquely represent each crossing xm in D as a pair of

4-tuples Sm = (si, sj , sk, sl) and Cm = (ci, cj , ck, cl), beginning with the positive integers

si and ci associated to the incoming under-strand, and proceeding anticlockwise around

the diagram. We encode D as a Diagram object via the n-tuples S = (S1, . . . , Sn) and

C = (C1, . . . , Cn). For example, the link diagram in Figure 6.1 is encoded in lines 2-4

of the code below. Note that when we are given a diagram for a knot, the n-tuple C

consists of n-many 4-tuples (1, 1, 1, 1) and is unnecessary to input into the program.

2 sage: S = [[1,2,2,1],[2,3,3,2],[3,4,4,3],[4,1,1,4]]

3 sage: C = [[1,2,1,2],[2,1,2,1],[1,2,1,2],[2,1,2,1]]

4 sage: D = Diagram(S,C)

From the sequence S = (S1, . . . , Sn), we can obtain the number of positive/negative

crossings by examining the strand-values sj and sl from each Sm. The crossing is pos-

itive when sl < sj and is negative otherwise. The Diagram object has these values as

attributes; see lines 5-6 of the code below.

5 sage: # .n returns the number of crossings; .np and .nn return the

number of positive and negative crossings, respectively

6 sage: [D.n, D.np , D.nn]

[4,4,0]

Other values are used within the code, such as the largest strand number and the number

of components, and are obtained similarly.

6.2.2 Encoding labeled smoothings and chains

The information provided by these n-tuples is sufficient to build the Khovanov chain

complex C(D) associated to the given link diagram D. We will first describe how a

labeled smoothing is encoded into the program and then describe how the program

produces the Khovanov chain complex associated to a diagram D.
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A labeled smoothing ασ is encoded using information from the Diagram object,

namely the tuples S and C. First, a smoothing can be represented as a binary sequence

σ = (σ1, . . . , σn), as described in Section 2.2. To label the smoothing, we wish to associate

a label to each loop L in σ, which requires a method for uniquely referencing these loops.

This is done by carrying over the enumeration of the strands si and components ci in

D to the strands2 in σ: label each strand in σ with its strand enumeration sj and the

component enumeration ck. To each loop L, we associate the unique pair of sequences

(sj) and (ck) beginning with the strand sj′ and component ck′ that represent the first

lexicographic pair (sj′ , ck′) ∈ S ×C on the strands of L, followed by successive labels as

we traverse L with respect to the direction of the strand sj′ from component cj′ in the

diagram D. We may obtain these sequences using an illustration of the smoothing, as in

Figure 6.2; the program does this for itself using the binary sequence for σ.

12, 23, 14,

22, 13, 24,

11,

21,

1

1

x

x

x

x
g1 =

g2 =

g3 =

Figure 6.2: The σ = (0, 0, 0, 0) smoothing of D decorated with the enumerations si and
ci from Figure 6.1 (left) and three labeled smoothings ασ (right).

The loop L in σ is then a sequence L = (sj , cj) of elements in S×C. For a smoothing

with ` loops, we may enumerate the loops Li = (si,j , ci,j) lexicographically by their

first pair (si,1, ci,1) ∈ S × C. A labeling of σ is an element v = (vk) ∈ {1,x}`, where

vi indicates the label of the loop Li. Therefore, a labeled smoothing is encoded as a

Generator object by three attributes: the Diagram object D, a binary sequence σ,

and a label v. As mentioned, the binary sequence uses the enumerations from D to
2By a strand of the smoothing, we mean a connected component of the smoothing once all smoothed

crossings have been removed; these correspond directly to the strands for a diagram.
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enumerate its loops. The choice of labels is dependent on the user-input, i.e., one’s own

ability to correctly enumerate the loops with respect to the input enumerations chosen

for the Diagram object. For example, the three labeled smoothings g1, g2, g3 ∈ C(D)

in Figure 6.2 are encoded in lines 7-9 of the code below. Generators in C(D) have a

print method (line 10) to reveal their binary sequence, strand sequences (sj), component

sequences (cj), label, and bigrading (calculated using Equations 2.12 and 2.13).

An arbitrary chain element in C(D) is a linear combination of generators
∑m

i=1 aiαi

and is encoded as a Chain object, whose attributes consist of an m-tuple (αi) of Gener-

ator objects and an m-tuple (ai) of coefficients. We have encoded the chain c = g1 + g2

in line 11. These objects have a similar print method to generators (line 12). They also

have the ability to add a summand am+1αm+1 to the chain (line 13).

7 sage: g1 = Generator(D, "0000", "x1")

8 sage: g2 = Generator(D, "0000", "1x")

9 sage: g3 = Generator(D, "0000", "xx")

10 sage: g1.printGenerator ()

-----

Generator

binary sequence: 0000

strand sequences: [[1,2,3,4], [2,3,4,1]]

component sequences: [[1,2,1,2], [1,2,1,2]]

label: x1

grading: (0,4)

-----

11 sage: c = Chain(D,[g1,g2],[1,1])

12 sage: c.printChain ()

---------------

Chain

bigrading: (0,4)

---------------
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Generator #1

binary sequence: 0000

strand sequences: [[1,2,3,4], [2,3,4,1]]

components sequences: [[1,2,1,2], [1,2,1,2]]

label: x1

grading: (0,4)

coefficient: 1

Generator #2

binary sequence: 0000

strand sequences: [[1,2,3,4], [2,3,4,1]]

components sequences: [[1,2,1,2], [1,2,1,2]]

label: 1x

grading: (0,4)

coefficient: 1

---------------

13 sage: c.addSummand(g2 ,-1) #prints the same as line 10

A ChainComplex object takes as input the Diagram D and produces the generators

of the Khovanov chain groups C(D) by creating a labeled smoothing for each admissible

labeling of the 2n binary sequences of length n. This object has a method for printing the

generators of a specific bigrading (line 15). The differential of the chain complex C(D)

is encoded as a pair of methods, acting either on a Generator (line 16) or a Chain

(line 18). We may check if a given a chain c is a cycle using the method from line 19. In

particular, the code checks if d(c) = 0 by comparing the trivial Chain object 0 with the

output of the method from line 18 applied to the Chain representing c. Finally, we also

allow for the differential from a specific bigrading

dh,q : Ch,q(D)→ Ch+1,q(D)

to be printed as an array (line 21).
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14 sage: CC = ChainComplex(D)

15 sage: CC.printChainGroup (0,4) #returns the same as line 12

16 sage: CC.d(g1). printChain ()

---------------

Chain

bigrading: (1,4)

---------------

Generator #1

binary sequence: 0001

strand sequences: [[1,2,3,4,4,3,2,1]]

components sequences: [[1,2,1,2,1,2,1,2]]

label: x

grading: (1,4)

coefficient: 1

Generator #2

binary sequence: 0010

strand sequences: [[1,2,3,3,2,1,4,4]]

components sequences: [[1,2,1,2,1,2,1,2]]

label: x

grading: (1,4)

coefficient: 1

Generator #3

binary sequence: 0100

strand sequences: [[1,2,2,1,4,3,3,4]]

components sequences: [[1,2,1,2,1,2,1,2]]

label: x

grading: (1,4)

coefficient: 1
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Generator #4

binary sequence: 1000

strand sequences: [[1,1,4,3,2,2,3,4]]

components sequences: [[1,2,1,2,1,2,1,2]]

label: x

grading: (1,4)

coefficient: 1

---------------

17 sage: CC.d(g2). printChain () #returns the same as line 16

18 sage: CC.dChain(Chain(D,[g1,g2],[1,-1]). printChain ()

0

19 sage: print(CC.isCycle(Chain(D,[g1 ,g2],[1,-1]))

True

20 sage: CC.printChainGroup (1,4) #returns the same as line 16

21 sage: CC.printChainMap (-1,4)

-------------------------

Chain Map (-1,4) --> (0,4)

-------------------------

[[0], [0]]

22 sage: CC.printVector(Chain(D,[g2 ,g1],[-1,1]))

[1,-1]

23 sage: print(CC.isBoundary(Chain(D,[g1 ,g2],[1,-1])))

False

From here it should be clear how we determine if a chain in Ch,q(D) represents a

trivial homology class. We have already seen that we can: check that the chain is a cycle;

calculate the chain groups Ch,q(D) and Ch+1,q(D); represent the cycle as a vector b in

Ch+1,q(D), with respect to the chosen basis (line 22); calculate the chain map dh,q as a

matrix M (line 21); and finally, check if b is in the image of M (line 23).
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Remark 6.2.1. There are two main restrictions to this code. First, the diagram for the

knot cannot contain either of the images from Figure 6.3. This is because the code cannot

detect the orientation of the unknot component by examining the strands. Second, the

code does not run efficiently enough to work for knots with more than 13 crossings.

Figure 6.3: A set of link diagrams that our SageMath program does not handle.

6.3. Applications

To give an explicit application of the SageMath program from the previous section,

we will reprove Theorem 5.3.3 by showing that the slice disks D` and Dr bounding 946

produce distinct ϕ-classes. Previously, we proved this theorem by showing ϕ(D`)±ϕ(Dr)

are mapped nontrivially by a (nonorientable) cobordism C : 946 → 31#31. Here, we will

directly show that ϕ(D`)± ϕ(Dr) are nontrivial in H(946).

The φ-cycles associated to D` and Dr were calculated in Section 5.3, and are given

in Figure 5.2. We will show these cycles represent distinct homology classes by showing

their sum/difference is not a boundary in the chain complex associated to the diagram

from Figure 6.4. We encode the chain complex C(946) in lines 1-3 using enumerations

from the same figure. The generators that make up the φ-cycles representing the relevant

ϕ-classes are encoded in lines 4-31. The chains φl + φr and φl − φr are encoded in lines

32-33. We ensure these chains are cycles and conclude that they are not boundaries in

C(946) in lines 34 and 35, respectively.
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1

321

654

987

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Figure 6.4: A diagram for 946 with enumerations of its crossings and strands.

1 sage: crossings = [[1,12,2,13],[6,14,7,13],[7,18,8,1],[11,2,12,3],

[14 ,6 ,15 ,5] ,[17 ,8 ,18 ,9] ,[3 ,10 ,4 ,11] ,[4 ,16 ,5 ,15] ,[9 ,16 ,10 ,17]]

2 sage: D = Diagram(crossings)

3 sage: CC = ChainComplex(D)

4 sage: l1 = Generator(D, "011011101", "1111")

5 sage: l2 = Generator(D, "101011101", "111x11")

6 sage: l3 = Generator(D, "101011101", "1x1111")

7 sage: l4 = Generator(D, "011101101", "111x11")

8 sage: l5 = Generator(D, "011101101", "1x1111")

9 sage: l6 = Generator(D, "101101101", "11 x11x11")

10 sage: l7 = Generator(D, "101101101", "11 x1x111")

11 sage: l8 = Generator(D, "101101101", "1x111x11")

12 sage: l9 = Generator(D, "101101101", "1x11x111")

13 sage: l10 = Generator(D, "011011011", "1111")

14 sage: l11 = Generator(D, "101011011", "1111")

15 sage: l12 = Generator(D, "011101011", "1111")

16 sage: l13 = Generator(D, "101101011", "111x11")

17 sage: l14 = Generator(D, "101101011", "1x1111")

18 sage: r1 = Generator(D, "111111100", "1111")

19 sage: r2 = Generator(D, "101111101", "11111x")

20 sage: r3 = Generator(D, "101111101", "1111x1")
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21 sage: r4 = Generator(D, "111101101", "11111x")

22 sage: r5 = Generator(D, "111101101", "1111x1")

23 sage: r6 = Generator(D, "101101101", "11111 x1x")

24 sage: r7 = Generator(D, "101101101", "11111 xx1")

25 sage: r8 = Generator(D, "101101101", "1111 x11x")

26 sage: r9 = Generator(D, "101101101", "1111 x1x1")

27 sage: r10 = Generator(D, "111111111", "1111")

28 sage: r11 = Generator(D, "101111111", "1111")

29 sage: r12 = Generator(D, "111101111", "1111")

30 sage: r13 = Generator(D, "101101111", "11111x")

31 sage: r14 = Generator(D, "101101111", "1111x1")

32 sage: c1 = Chain(D, [l1 ,...,l14 ,r1 ,...,r14],[1,...,1, 1,..., 1])

33 sage: c2 = Chain(D, [l1 ,...,l14 ,r1 ,...,r14],[1,...,1,-1,...,-1])

34 sage: [CC.isCycle(c1), CC.isBoundary(c1)] #Returns [True , False]

35 sage: [CC.isCycle(c2), CC.isBoundary(c2)] #Returns [True , False]
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Chapter 7

Duals and relative surfaces in the 4-ball

In this chapter, we reverse the approach from Chapter 5 by considering the maps in-

duced by link cobordisms L → ∅. In Section 7.1, we discuss these cobordisms and their

induced maps. In Section 7.2, we use these maps to extract an invariant of the boundary-

preserving isotopy class of the surface, analogous to the ϕ-class. Finally, in Section 7.3,

we apply this invariant to distinguish numerous pairs of surfaces in the 4-ball, including

exotic pairs.

7.1. Dual link cobordisms

As we have seen, a smooth, compact, oriented surface Σ embedded in the 4-ball can

be regarded as a link cobordism Σ : ∅ → L. We may obtain a second link cobordism

Σ∗ : L→ ∅ by reflecting Σ through the interval factor of S3 × [0, 1], having the effect of

reversing the cobordism1. As a result, a movie for Σ∗ is obtained by reversing the movie

for Σ.

Definition 7.1.1. The link cobordism Σ∗ : L → ∅ induced by a smooth, compact, ori-

ented surface Σ properly embedded in the 4-ball is called the dual link cobordism of Σ.

1To be clear, we define r : S3 × [0, 1]→ S3 × [0, 1] by r(s, t) = (s, 1− t) and set Σ∗ = r(Σ).
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Given a surface diagram S : D → ∅ of the link cobordism, the associated map on the

Khovanov chain complex CS(Σ∗) : C(D) → Z is called the dual chain map associated

to Σ, and the map it induces on Khovanov homology HS(Σ∗) : H(D) → Z is called the

induced dual map on Khovanov homology associated to Σ.

All of the hard work from Section 3 can be reproduced for dual link cobordisms and

their associated maps. In particular, we highlight analogous results regarding isotopy

in S3 × [0, 1] and B4 (Corollary 3.2.4) and diagram independence (Corollary 3.3.3).

Note that because the domain and codomain have switched, Corollary 3.3.3 has been

strengthened. As before, Corollary 7.1.3 means the surface diagram can be removed from

our notation.

Corollary 7.1.2. The induced dual map on Khovanov homology associated to a surface

in the 4-ball is invariant, up to sign, under boundary-preserving isotopy of the surface.

Corollary 7.1.3. The induced dual map is independent of the chosen surface diagram.

Remark 7.1.4. Dual link cobordisms get their name from the fact that the associated

dual chain map is, loosely, the dual of the induced chain map, up to isomorphism. That

is, we have the following diagram:

C(K1) (C(K1))∗ C(K̄1)

C(K0) (C(K0))∗ C(K̄0)

Ψ1 ψ1

(C(Σ))∗ C(Σ∗)C(Σ)

Ψ0 ψ0

where (·)∗ indicates the dual, (̄·) indicates the mirror image of a knot diagram, Ψ0,1 are

the dual maps (v 7→ v∗), and ψ0,1 are isomorphisms (1∗ 7→ x; x∗ 7→ 1). The requirement

to mirror the knot diagrams is simply there to make things work.

84



Remark 7.1.5. As might be expected, we do not typically go through the long process

of taking a surface in the 4-ball, considering its induced link cobordism Σ : ∅ → L,

constructing a movie for Σ, and finally producing a movie for the desired dual cobordism

Σ∗ : L → ∅. Instead, we simply write down a movie beginning with a diagram D for L

and ending with an empty link ∅, and this movie induced a surface in the 4-ball.

7.2. ϕ∗-classes

As in the exploration of ϕ-classes (Section 5.1), we employ the fact that the induced

dual map acts as an invariant of the boundary-preserving isotopy class of the associated

surface in the 4-ball (Corollary 7.1.2). In particular, we extract specific invariants from

the induced dual maps, and in comparison to ϕ-classes, the current invariants carry

a new degree of flexibility. Previously, we saw that a link cobordism Σ : ∅ → L and

diagram D for L gave rise to a single class ϕ(Σ) ∈ H(D), which acted as a proxy for the

the associated induced map H(Σ) : Z → H(D), in the sense that ϕ(Σ) determined the

entire mapH(Σ), through which it itself acted as an invariant of the boundary-preserving

isotopy of Σ. In the current setting, the dual link cobordism Σ∗ : L → ∅ induces a map

H(Σ∗) : H(D)→ Z that is not (necessarily) determined by a single class.

Definition 7.2.1. For a smooth, compact, oriented surface Σ ⊂ B4 with boundary link

represented by a diagram D, and a Khovanov homology class ϕ ∈ H(D), the integer

ϕ∗(Σ) := H(Σ∗)(ϕ) ∈ Z

is called the ϕ∗-class of Σ. Similarly, for the cycle φ ∈ C(D) representing ϕ, the integer

φ∗(Σ) := C(Σ∗)(φ) ∈ Z

is called the φ∗-cycle of Σ.

Remark 7.2.2. It should be noted that a φ∗-cycle is not necessarily the dual of the

φ-cycle. We do not mean φ∗(Σ) = (φ(Σ))∗ when defining a φ∗-cycle for a surface. This
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is only the case when we set φ = φ(Σ), which (in practice) counteracts the idea of

simplifying calculations trough the choice of φ.

Note that each class ϕ ∈ H(D) will produce an associated ϕ∗-class via the induced

dual map. As the map H(Σ∗) is invariant under boundary-preserving isotopy of Σ∗, each

ϕ∗-class is also an invariant of the boundary-preserving isotopy of Σ∗. In particular, a

pair of surfaces Σ0,1 having a common boundary link L and inducing dual maps that

disagree on a chosen ϕ∗-class,

ϕ∗(Σ0) = H(Σ∗0)(ϕ) 6= H(Σ∗1)(ϕ) = ϕ∗(Σ1)

are necessarily non-isotopic relative their boundary. Thus, we may again isolate the

invariance of the entire map H(Σ∗0,1) to individual classes, with the additional flexibility

to choose the class ϕ ∈ H(D) with which we will study invariance.

As the boundary-preserving isotopy class of Σ and Σ∗ are equivalent (isotopies for

either are related by a diffeomorphism that reverses the interval factor of S3 × [0, 1]),

Corollary 7.2.3 implies that ϕ∗-classes are invariants of the boundary-preserving isotopy

of Σ and Σ∗. We summarize this as the following result.

Corollary 7.2.3. For a smooth, closed, oriented surface Σ embedded in the 4-ball with

boundary-link L ⊂ S3, represented by a diagram D, the ϕ∗-class associated to some class

ϕ ∈ H(D) is an up-to-sign invariant of the boundary-preserving isotopy class of Σ.

We again highlight the relevance of the φ∗-cycle. Note that the maps C(Σ∗) and

H(Σ∗) have codomain supported in the (0, 0)-grading, so the ϕ∗-class is necessarily the

same as the φ∗-cycle. As all calculations are based on the φ∗-cycle, there is generally no

need to bother with the associated ϕ∗-class. For these reasons, we often use the cycle

and class interchangeably. The only cause for caution is that, when defining a ϕ∗-class,

we must ensure that the φ∗-cycle with which it is represented is indeed a cycle.
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As the induced dual map is independent of the chosen surface diagram (Corollary

7.1.3), we also have diagram invariance of the ϕ∗-classes, as in the following Corollary.

Corollary 7.2.4. The ϕ∗-classes are independent of the chosen diagram.

7.3. ϕ∗-distinguished pairs of surfaces

The motivation for defining and studying ϕ∗-classes is to improve on and extend the

distinguishing abilities of ϕ-classes. Considering the concerns expressed in Section 5.5,

there are two areas to address: ϕ-classes are hard to compute and to distinguish. The

latter concern has already vanished: the ϕ∗-classes are integral invariants, which are

easily distinguished. We will see shortly that the former concern is significantly reduced

by the flexibility of choosing the ϕ∗-class with which we distinguish surfaces.

Definition 7.3.1. A family of smooth, oriented, compact surfaces Σ1, . . . ,Σn ⊂ B4 that

are properly embedded and share a common boundary link L ⊂ S3, represented by a

diagram D, are ϕ∗-distinguished by their maps on Khovanov homology if there exists

a class ϕ ∈ H(D) for which the associated ϕ∗-classes are pairwise distinct, up to sign,

that is ϕ∗(Σi) 6= ±ϕ∗(Σj) for i 6= j.

Throughout the remainder of this section, we give pairs of surfaces Σ0,1 in the 4-ball

that are ϕ∗-distinguished via

ϕ∗(Σ0) = 0 6= ±1 = ϕ∗(Σ1)

As of yet, we have not constructed natural examples in which the ϕ∗-class is not 0 or ±1,

though we have no reason to expect them not to exist (by natural we mean excluding

cases where we simply alter the coefficient of a ϕ∗-class).

The flexibility to choose the class ϕ which ϕ∗-distinguishes Σ0,1 is key to our success.

How does one choose ϕ, especially when the Khovanov homology group H(D) to which
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it belongs can be exceedingly complex? The current methods for choosing ϕ are more

an art than a science, but we summarize some of our methods here. In our work, we

typically began with the orientation-induced smoothing where 0-tracing loops are x-

labeled and all other loops are 1-labeled. This labeled state is always a cycle lying in

homological grading h = 0. However, it may not have the desired quantum grading; a

surface Σ induces a (0, χ(Σ))-graded map, so a cycle must lie in the (0,−χ(Σ))-grading

in order for it to be mapped to the (0, 0)-supported chain group C(∅) = Z. While the

homological grading (and the underlying diagram) determines the overall balance of 0-

and 1-resolutions, the quantum grading can be adjusted by varying the specific choice of

crossing resolutions (which may change the number of loops in the smoothing) and the

labeling of loops. We made these adjustments, keeping in mind that the result should be

a cycle and should be killed by the map induced by one band move but not the other. In

our core cases, the slice disks are related by a symmetry of the knot; making asymmetric

adjustments to the orientation-induced smoothing helped produce the desired cycle.

Remark 7.3.2. Again, because the induced maps on Khovanov homology do not detect

local knotting, any ϕ∗-distinguished surfaces are not obtained by local knotting.

7.3.1 Two pairs of slice disks

Consider the two slice disks D` and Dr bounding the knot 946. We saw in Section 5.3

that these slice disks were ϕ-distinguished; here we show they are ϕ∗-distinguished via

the class represented by the cycle φ given on the bottom-left of Figure 7.1.

We first verify that φ is a cycle. Indeed, every 0-smoothing merges two x-labeled

components, so by Proposition 2.2.7, φ is a cycle representing a homology class. We see

immediately that φ∗(Dr) = 0, as the right-hand saddle merges two x-labeled components.

On the other hand, we see from Figure 7.1 that φ∗(D`) = 1, proving that D` and Dr are

φ∗-distinguished.
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Figure 7.1: The calculation that φ∗(D`) = 1 for the given cycle φ. The top line indicates
the movie used to describe D`, while the bottom line tracks the cycle φ throughout the
chain map induced by each move in the movie.

Similar calculations can be done for the slice disks in Figure 7.2 bounding the knot

15n103488. One can quickly recognize that, again, the right-hand saddle merges two x-

labeled components, forcing φ 7→ 0. The left-hand saddle splits a single x-labeled com-

ponent, and after a bit of work, we see that φ 7→ 1. We leave it as an exercise to the

reader to verify this calculation.

The comparative ease with which we were able to distinguish pairs of slice disks

bounding 946 and 15n103488 gives us hope that, not only can we improve on ϕ-classes as

an invariant, we can use them to produce new results.

x

x

x
x

x

x

Figure 7.2: A diagram for 15n103488 and band moves describing a pair of slice disks that
are φ∗-distinguished by the given cycle φ.
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Remark 7.3.3. The pairs of slice disks for either knot m(946) and 15n103488 can be

distinguished by their map on fundamental groups induced by the map which includes the

knot complement into the slice disk complement. It follows that these pairs of disks are

not even topologically isotopic rel boundary (or even homotopically isotopic). As the maps

on Khovanov homology are invariants of smooth boundary-preserving isotopy, the natural

follow-up question is, can the maps on Khovanov homology distinguish topologically

equivalent surfaces?

7.3.2 A pair of exotic slice disks

Surfaces that are topologically but are not smoothly isotopic rel boundary are called

exotic surfaces and have been known to exist in the 4-ball [Akb91, Hay21]. Khovanov

previously posed the question: can Khovanov homology detect pairs of exotic surfaces

[Kho21]. We answer that question here in the affirmative.

1

x
x x

x

x

Figure 7.3: A pair of slice disks bounding the knot J = 17nh34 that are φ∗-distinguished
by the given cycle φ ∈ C(J).

Consider the knot J = 17nh34 given by the knot diagram in Figure 7.3. A pair of

slice disks D` and Dr bound J , described be the band moves on the diagram. We first

show these slice disks are topologically equivalent, and then use the maps on Khovanov

homology to show they are not smoothly equivalent. Topological equivalence relies on
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the following theorem [CP21, Theorem 1.2] which is proven using surgery theory.

Theorem 7.3.4 ([CP21]). Any smooth, properly embedded disks in the 4-ball with the

same boundary and whose complements have fundamental group π1
∼= Z are topologically

isotopic rel boundary.

Theorem 7.3.5. The slice disks D` and Dr are topologically isotopic rel boundary.

Proof. By construction, the disks have the same boundary. By Theorem 7.3.4, it then

suffices to show that the disk-exteriors have fundamental group isomorphic to Z.

A handle diagram for B4 \ N̊(D`) is shown on the left side of Figure 7.4, obtained

using the recipe from [GS99, §6.2]. This can be simplified to the handle diagram on

the right. One can use this handle diagram to see that B4 \ N̊(D`) has homotopy type

of S1 × B3, which has fundamental group Z, as desired (c.f., [HS21]). Alternatively,

after isotoping the handle diagram further to separate the 0-handles, we can obtain a

presentation for the fundamental group of B4 \ N̊(D`) which simplifies to a presentation

for Z (c.f., [Hay21]).

A handle diagram for the exterior of Dr is obtained from that of D` by applying a

180◦ rotation, so a symmetric argument shows π1(B4 \Dr) ∼= Z.

0 0

Figure 7.4: A pair of equivalent handle diagrams for the exterior of the slice disk D` ⊂ B4

bounding the knot J from Figure 7.3.
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Theorem 7.3.6. The slice disks D` and Dr are not smoothly isotopic rel boundary.

Proof. It suffices to show that D` and Dr induce distinct maps on Khovanov homology,

or equivalently, that they are ϕ∗-distinguished by a class ϕ ∈ H(J).

Consider the chain φ ∈ C(J) on the right of Figure 7.3. Proposition 2.2.7 guarantees

that φ is a cycle, as every 0-smoothing on φ merges two x-labeled components. Thus, φ

represents a homology class ϕ ∈ H(J). The dual map induced by Dr immediately merges

two x-labeled components, so ϕ∗(Dr) = 0. On the other hand, we calculate φ∗(D`) = 1

in Figure 7.5. Thus, D` and Dr induce distinct maps on Khovanov homology and are

not smoothly isotopic rel boundary.

Corollary 7.3.7. The slice disks D` and Dr are exotic.

7.3.3 Exotic slice disks bounding asymmetric knots

For any m ∈ Z, there is a ribbon concordance Cm : J → Jm from the knot J to the

knot Jm depicted on the left side of Figure 7.6, having m half left-handed twists on the

left-hand side of the knot. In reverse, we have a cobordism Cm : Jm → J that performs

the additional band move on Jm and caps off the resulting unknot. Attaching the ribbon

concordance Cm to the slice disks D` and Dr bounding J , we obtain a pair of slice disks

D`,m and Dr,m bounding the knot Jm.

Theorem 7.3.8. For m ≥ 0, the disks D`,m and Dr,m are exotic.

Proof. The slice disks are topologically isotopic because they are constructed by extend-

ing a pair of topologically isotopic slice disks by a common link cobordism Cm. More

explicitly, we may produce a topological isotopy between D`,m and Dr,m by extending

the topological isotopy between D` and Dr (from Theorem 7.3.5) across the ribbon con-

cordance C via the identity. By construction, Jm will be fixed throughout.
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Figure 7.5: A movie description of the slice disk D` and the behavior of the distinguished
cycle φ ∈ C(J) under the cobordism map induced by this slice.

93



x
x x

x

x

x

x

1

x

Figure 7.6: A pair of slice disks Dm,` and Dm,r bounding an asymmetric version Jm of
the knot J . They are θm∗-distinguished by the given cycle θ ∈ C(Jm).

To distinguish Dm,` and Dr,` smoothly, we show they induce distinct maps on Kho-

vanov homology, or equivalently, that they are ϑm∗-distinguished by a class ϑm ∈ H(Jm).

Consider the chain θm ∈ C(Jm) on the right-hand side of Figure 7.6. Again, this is a

cycle because each 0-smoothing merges a pair of distinct x-labeled components, and so,

it represents a class ϑm ∈ H(Jm). It is straightforward to check that the map induced

by Cm sends θm to the cycle φ ∈ C(J) defined in Theorem 7.3.6. We then have

θm
∗(D`,m) = C(D ∗

`,m)(θm) = C(D∗` ◦ Cm)(θm) = C(D∗` )(φ) = φ∗(D`) = 1

Similarly, we see that θm∗(Dr,m) = φ∗(Dr) = 0. Thus, the slice disks D`,m and Dr,m are

ϑm
∗-distinguished, as desired.

Unlike the examples in §7.3.1-7.3.2, which involve slice knots with nontrivial sym-

metries, the knots Jm are asymmetric. That is, every self-diffeomorphism of the pair

(S3, Jm) is isotopic (through diffeomorphisms of the pair) to the identity. This is proven

in [HS21, Appendix A2].
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Figure 7.7: A pair of surfaces Σ`,n and Σr,n bounding a higher-genus version J ′n of the
knot J . They are ρn∗-distinguished by the given cycle ρn ∈ C(J ′n).

7.3.4 Higher genus exotic slices

For n ≥ 0, there is a genus n link cobordism Σn : J → J ′n from the knot J in Figure 7.3

to the knot J ′n depicted on the left side of Figure 7.7, having n full right-handed twists

on the right-hand side of the knot. In reverse, we have a cobordism Σn : J ′n → J obtained

by performing the additional band moves on J ′n. We obtain a pair of surfaces Σ`,n and

Σr,n bounding J ′n by gluing Σn to the slice disks D` and Dr, respectively.

Theorem 7.3.9. For n ≥ 0, the surfaces Σ`,n and Σr,n are exotic.

Proof. The proof follows nearly identical to that of Theorem 7.3.8. The surfaces are topo-

logically isotopic because we have extended topologically isotopic disks by the same link

cobordism Σn. They are not, however, smoothly isotopic, as they are %n∗-distinguished

by the cycle ρn ∈ C(J ′n) shown on the right-hand side of Figure 7.7. The calculations are

similar: ρn∗(Σ`,n) is distinguished from ρn
∗(Σr,n) by factoring the induced maps through

the cobordism Σn and noting that C(Σn)(ρn) = φ. Therefore, we conclude that Σn,` and

Σn,r are %n∗-distinguished.

95



A knot Jm,n that is both asymmetric and of higher genus may be produced by, loosely,

applying both link cobordisms Cm and Σn to the knot J . More explicitly, for m,n ≥ 0,

there is a link cobordism Σm,n from J to the knot Jm,n depicted in Figure 7.8, having

m half left-handed twists on the left-hand side and n full right-handed twists on the

right-hand side of the knot. A pair of genus n surfaces Σ`,m,n and Σr,m,n bounding Jm,n

are obtained in the expected manner and are exotically isotopic rel boundary, being

ϕmn
∗-distinguished by a class ϕm,n ∈ H(Jm,n).

Figure 7.8: A higher-genus, asymmetric version Jm,n of J , bounding surfaces Σ`,m,n and
Σr,m,n that are distinguished by their induced maps on Khovanov homology.

7.3.5 Extensions to absolute isotopy

The above results were extended to ambient isotopy of the surfaces in [HS21]. The

techniques diverge from our story, which centers Khovanov homology, and so we do not

repeat them here. They’re amazing though, so definitely check them out. And them’s

the facts.
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Appendix

Appendix A: Categories

Here we describe two main categories: the cobordism category (in dimensions 2 and 3)

and the category of R-modules. We also define and describe the symmetric and monoidal

properties of these categories. We will use C to denote a category, ob(C) to denote the

objects in C, and mor(C) to denote the morphisms in C.

Symmetric, monoidal functors

A monoidal category (C,⊗) is a category C equipped with a bifunctor ⊗ : C×C→ C

that is associative and has a left and right identity. The notation for the bifunctor

varies, as we will see below. A monoidal category (C,⊗) is symmetric if its bifunctor is

symmetric: for all objects A,B ∈ ob(C) there is a natural isomorphism between A⊗B

and B ⊗ A. A symmetric, monoidal functor is a functor between symmetric, monoidal

categories that (put loosely) respects the symmetry of the bifunctor.

These definitions (and their notation) are inspired by the following category.

Category of R-modules

The algebraic category we work with is the category ModR of R-modules over a finitely-

generated, commutative ring R with unity (up to isomorphism). Monoidality in this
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category is obtained through the tensor product ⊗ of R-modules, which is symmetric.

Category of cobordisms

The foundation of this dissertation is the n-dimensional cobordism category Cobn. This

category is critical in the definition of a topological quantum field theory, with which we

define Khovanov homology.

Definition. The cobordism category Cobn is a symmetric, monoidal category: the

objects are smooth, closed, oriented (n− 1)-manifolds embedded in Rn; the morphisms

are smooth, closed, oriented n-manifolds Σ that are properly embedded in Rn × [0, 1],

considered up to homotopy equivalence and composed by stacking and rescaling the

interval factor; the bifunctor is the disjoint union t with identity the empty manifold ∅.

Remark. One might be able to get by without embedding the objects in Rn, however, we

run into more headaches when we wish to decompose the morphisms. In the embedded

setting, the interval factor of Rn × [0, 1] induces a Morse function on a given morphism.

Remark. In similar resources, the condition that morphisms are considered up to homo-

topy equivalence is omitted and used to form a quotient category Cobn/h.

This dissertation focuses on the case n = 2 and n = 3. Note that the objects in Cob3

are links and the morphisms are link cobordisms; these are discussed in detail in Section

2.1. The category Cob2 is discussed in detail below.

(2+1)-dimensions The 3-dimensional cobordism category can be described very ex-

plicitly. The objects in Cob3 are planar 1-manifolds, or simply collections of circles in

the plane. The morphisms in Cob3 are surfaces in R2 × [0, 1], which can be decom-

posed using the following process. A morphism S ⊂ R2 × [0, 1] can be isotoped so that,

with respect to the interval factor, it has finitely-many, nondegenerate critical values
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x1, . . . , xn. These values correspond to handle attachments, isolated within the surfaces

Si = S ∩ (R2 × [xi − ε, xi + ε]}). Each Si is a disjoint union of a finite number of cylin-

ders and exactly one fundamental cobordism, illustrated in Figure ??. Away from Si, the

surface is (isotopic to) a product. Fundamental cobordisms are extremely useful, as they

allow us to easily describe any morphism in Cob3 as a composition of many small, simple

cobordisms.

Figure A.1: The fundamental cobordisms (left to right): cap, product, cylinder, permu-
tation coproduct, cup.

As we will often write a cobordism in Cob3 as a composition of fundamental cobor-

disms, it will be convenient to develop a shorthand. We denote collection of n ≥ 0

embedded circles in the plane
⊔
n S

1 ↪→ R2 by n. When n is small, say n = 2, we write

t . Thus, we may write the fundamental cobordisms in Figure ?? as cobordisms on

n for some n.

( ) the cap, : → ∅

( ) the product, : t →

(id) the cylinder, id : →

(perm) the permutation, perm : 2 → 2

( ) the coproduct, : → t

( ) the cup, : ∅ →
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This shorthand also allows us to write any morphism in Cob3 as a composition of fun-

damental cobordisms, which we will read right to left. For example, a closed sphere can

be written S = ◦ and a closed torus as T = ◦ ◦ ◦ . It will be useful to

adopt a shorthand for one additional surface, namely the punctured torus. Let : → ∅

denote the composition = ◦ ◦ , and let : ∅ → denote the composition

= ◦ ◦ .

The notation
⊔

we used to describe collections of disjoint spheres in the plane can

also be used to describe collections of disjoint surfaces in R2 × [0, 1]. For example, we

might write t to mean the morphism 2 → 3 where acts on one copy of and

acts on the other. This is particularly useful when writing out the surfaces Si used to

define the fundamental cobordisms (above), which can be expressed as

id t · · · t id t T t id t · · · t id (7.1)

where T is one of , , , . The key aspect of the operation t is that it gives Cob3

the structure of a symmetric, monoidal category (Cob3,t).
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Appendix B: Topological quantum field theories

In this section, we discuss topological quantum field theories, or TQFTs. A deep under-

standing of TQFTs is not necessary to understand this dissertation, however, we wish

to draw some attention to one aspect of 2-dimensional TQFTs that is generally omit-

ted from the literature on Khovanov homology: how does one construct a 2-dimensional

TQFT and ensure that it is well-defined?

Definition. A (n+1)-dimensional topological quantum field theory is a symmet-

ric, monoidal functor G : (Cobn+1,t)→ (ModR,⊗) satisfying G(∅) = R.

This definition is based on [Ati90]. As we are only concerned with constructing 2-

dimensional TQFTs, we restrict to n = 2 henceforth.

Building a 2-dimensional TQFT Suppose we are defining a 2-dimensional topolog-

ical quantum field theory G. Recall that the objects in the cobordism category Cob3 are

collections of finitely many smooth, disjoint circles in the plane. For such objects, we

have G
(⊔

S1
)

=
⊗
G(S1) by the monoidality of G. It then suffices to define G(S1) and

extend via this definition. In short, to define a topological quantum field theory on the

objects of Cob3, it suffices to choose a finitely-generated R-module V and set G(S1) = V .

By default, we also set G(∅) = R, as in the above definition.

The morphisms in the cobordism category are surfaces embedded in R2×[0, 1]. Recall

that after much consideration, these cobordisms can be decomposed into a collection of

fundamental cobordisms, as in Figure ??. Thus, it suffices to define G on each of the

fundamental cobordisms, whereby we may decompose any morphism into a collection of

local fundamental cobordisms S = Sn ◦ · · · ◦S2 ◦S1 and functorially define G across this
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decomposition by setting

G(S) = G(Sn) ◦ · · · ◦ G(S2) ◦ G(S1)

The concern with this definition is that the chosen decomposition of S is not unique, and

moreover, morphisms in Cob are considered up to boundary-preserving isotopy. Thus,

we immediately run into questions of well-definedness. Does this definition of G depend

on the decomposition of S? Is G invariant under isotopy of S?

Well-definedness To ensure this definition is well-defined, we must verify that it sat-

isfies a set of relations. In particular, any two decompositions of equivalent morphisms

(i.e. surfaces in R2 × [0, 1] related by a boundary-preserving isotopy) into fundamental

cobordisms are related by a sequence of births, deaths, or swaps of critical values2. These

relations on the critical values can be realized as isotopies of surfaces, which we illustrate

in Figure B.1. These relations are called the fundamental relations. Thus, we conclude

that if the morphisms in ModR obtained by the definition of G on the fundamental cobor-

disms satisfy the equations induced by the fundamental relations, then the definition of

G on any surface (considered up to boundary-preserving isotopy) will be independent of

the decomposition into fundamental cobordisms (as well as under boundary-preserving

isotopy of the surface).

Note that with the shorthand developed in Appendix A, we can write out the funda-

mental relations somewhat algebraically:

( t id) ◦ (id t ) = ◦ = (id t ) ◦ ( t id)

( t id) ◦ = id = ◦ (id t )

◦ (id t ) = ◦ ( t id)

(id t ) ◦ = ( t id) ◦

(7.2)

By assigning notations to the corresponding maps for each fundamental cobordism, we

2This is a nontrivial exercise in Cerf theory.
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may write these equations out algebraically. When defined carefully, these maps give V

the structure of a coassociative, cocommutative coalgebra.

(ε) the map G( ) is a counit ε : V → R

(m) the map G( ) is a product m : V ⊗ V → V

(id) the map G(id) is the identity map id : V → V

(∆) the map G( ) is a coproduct ∆: V → V ⊗ V

(ρ) the map G(perm) is a permutation map ρ : V ⊗ V → V ⊗ V , a⊗ b 7→ b⊗ a.

(ι) the map G( ) is a unit ι : R→ V

With this notation, the corresponding equations from 7.2 become:

(m⊗ id) ◦ (id⊗∆) = m ◦∆ = (id⊗∆) ◦ (m⊗ id)

(ε⊗ id) ◦∆ = id = m ◦ (id⊗ ι)

m ◦ (id⊗m) = m ◦ (m⊗ id)

(id⊗∆) ◦∆ = (∆⊗ id) ◦∆

(7.3)

Therefore, a TQFT G which assigns the fundamental cobordisms to maps which

satisfy Equation 7.3, will be well-defined. Alternatively, any Frobenius system will define

a 2-dimensional TQFT (c.f., [Kho06b]).

103



Figure B.1: The fundamental relations for Cob3.
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Appendix C: Supplementary Code

Distinguishing ϕ-classes from a pair of slice disks with boundary 61 The φ-

cycles associated to a pair of slice disks bounding the knot 61 were given in Figure

5.6. We will show these cycles represent distinct homology classes by showing their

sum/difference is not a boundary in the chain complex associated to the diagram 61.

This is done by running the SageMath program, discussed in Section 6. In particular, we

use the enumerations from Figure C.1 and run the given code to determine the cycles in

the aforementioned figure are distinct.

1 sage: crossings = [[1,5,2,4],[5,1,6,12],[11,7,12,6],

[7,11,8,10],[3,8,4,9],[9,2,10,3]]

2 sage: D = Diagram(crossings)

3 sage: CC = ChainComplex(D)

4 sage: l1 = Generator(D, "011000", "1xx")

5 sage: l2 = Generator(D, "011000", "x1x")

6 sage: l3 = Generator(D, "011000", "xx1")

7 sage: l4 = Generator(D, "010010", "1xx")

8 sage: l5 = Generator(D, "010010", "x1x")

9 sage: l6 = Generator(D, "010010", "xx1")

10 sage: l7 = Generator(D, "001001", "1xx")

11 sage: l8 = Generator(D, "001001", "x1x")

12 sage: l9 = Generator(D, "001001", "xx1")

13 sage: l10 = Generator(D, "000011", "1xx1x")

14 sage: l11 = Generator(D, "000011", "x1x1x")

15 sage: l12 = Generator(D, "000011", "xx11x")

16 sage: l13 = Generator(D, "000011", "xxx11")

17 sage: l14 = Generator(D, "000011", "1x1xx")

18 sage: l15 = Generator(D, "000011", "x11xx")

19 sage: l16 = Generator(D, "000011", "xx11x")

20 sage: l17 = Generator(D, "000011", "xx1x1")

21 sage: r1 = Generator(D, "001100", "1xx")
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22 sage: r2 = Generator(D, "001100", "x1x")

23 sage: r3 = Generator(D, "001100", "xx1")

24 sage: r4 = Generator(D, "110000", "1xx")

25 sage: r5 = Generator(D, "110000", "x1x")

26 sage: r6 = Generator(D, "110000", "xx1")

27 sage: r7 = Generator(D, "100100", "xx1")

28 sage: r8 = Generator(D, "000011", "1x1xx")

29 sage: r9 = Generator(D, "000011", "x11xx")

30 sage: r10 = Generator(D, "000011", "xx11x")

31 sage: r11 = Generator(D, "000011", "xx1x1")

32 sage: c1 = Chain(D, [l1 ,...,l17 ,r1 ,...,r11],

[1,-1,-1,-1, 1,-1,-1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,

1, 1,-1, 1,-1,-1,-2,-1, 1, 1, 1])

33 sage: c2 = Chain(D, [l1 ,...,l17 ,r1 ,...,r11],

[1,-1,-1,-1, 1,-1,-1, 1,-1,-1, 1, 1,-1,-1, 1, 1,-1,

-1,-1, 1,-1, 1, 1, 2, 1,-1,-1,-1])

34 sage: [CC.isCycle(c1), CC.isBoundary(c1)] #Returns [True , False]

35 sage: [CC.isCycle(c2), CC.isBoundary(c2)] #Returns [True , False]

1
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2

3
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5 6

2

3

4

5

6 12

11 7

8

9

10

Figure C.1: A diagram for 946 with enumerations of its crossings and strands.
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Determining nontriviality of the ϕ-class associated to a genus-1 surface with

boundary 11n34 Below, we give two sets of code which show that the ϕ-class obtained

from the movies in Figures C.3 and C.5 are nontrivial. The code uses the enumerations

from Figures C.2 and C.4, respectively.

1 sage: crossings = [[1,16,2,17],[2,7,3,8],[17,13,18,12],

[11,1,12,22],[15,10,16,11],[6,9,7,10],[8,3,9,4],[13,19,14,18],

[21 ,15 ,22 ,14] ,[20 ,6 ,21 ,5] ,[4 ,20 ,5 ,19]]

2 sage: D = Diagram(crossings)

3 sage: CC = ChainComplex(D)

4 sage: g1 = Generator(D, "01000110101", "xx1x")

5 sage: g2 = Generator(D, "01000010111", "xxx1")

6 sage: g3 = Generator(D, "01000110110", "xx1x")

7 sage: g4 = Generator(D, "01000100111", "xx1x")

8 sage: c = Chain(D, [g1,g2,g3 ,g4], [2,2,2,2])

9 sage: [CC.isCycle(c),CC.isCycle(c)] #Returns [True , False]

1 sage: crossings = [[1,15,2,14],[13,3,14,2],[15,6,16,7],[12,8,13,7],

[5,16,6,17],[4,12,5,11],[8,4,9,3],[17,20,18,21],[10,22,11,21],

[19 ,24 ,20 ,1] ,[23 ,18 ,24 ,19] ,[22 ,10 ,23 ,9]]

2 sage: D = Diagram(crossings)

3 sage: CC = ChainComplex(D)

4 sage: g1 = Generator(D, "001101010101", "xxx")

5 sage: g2 = Generator(D, "001110010101", "xxx1x")

6 sage: g3 = Generator(D, "001110001101", "xxxx1")

7 sage: g4 = Generator(D, "001101010010", "xxx1x")

8 sage: g5 = Generator(D, "001101010010", "xxxx1")

9 sage: g6 = Generator(D, "001110010010", "xxx1x1x")

10 sage: g7 = Generator(D, "001110010010", "xxx1xx1")

11 sage: g8 = Generator(D, "001101001010", "xxx")

12 sage: g9 = Generator(D, "001110001010", "xxx1x")

13 sage: c = Chain(D, [g1,g2,g3 ,g4 ,g5 ,g6,g7,g8,g9], [1,1,1,1,1,1,1,1,1])

14 sage: [CC.isCycle(c), CC.isBoundary(c)] #Returns [True , False]
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Figure C.2: A diagram for the Conway knot 11n34 with enumerations of its crossings
and strands.

Figure C.3: A shortened movie describing a genus-1 surface bounding the Conway knot;
a single crossing change on the left-most diagram produces an unknot diagram, which
can be untangled (bottom right, after a final Reidemeister II and I) and capped off.

108



2

3 4

5 6 7

8 9

11

1

2

4

6
8

9

10

11

12

13

14

15

16

17

18
20

21
22

23

24

19

1

7

5

3

10

12

Figure C.4: A diagram for the Conway knot 11n34 with enumerations of its crossings
and strands.

Figure C.5: A shortened movie describing a genus-1 surface bounding the Conway knot,
where the last frame can be untangled with Reidemeister I’s and capped off.
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